

Certificate of compliance

Applicant:

SMA Solar Technology AG Sonnenallee 1 34266 Niestetal Germany

Product:

Grid-tied photovoltaic (PV) inverter

Model:

SB1.5-1VL-40 SB2.0-1VL-40 SB2.5-1VL-40

Use in accordance with regulations:

Automatic disconnection device with single-phase mains surveillance in accordance with Engineering Recommendation G99/1 for photovoltaic systems with a single-phase parallel coupling via an inverter in the public mains supply. The automatic disconnection device is an integral part of the aforementioned inverter. This serves as a replacement for the disconnection device with isolating function that can access the distribution network provider at any time.

Applied rules and standards:

Engineering Recommendation G99/1-4:2019

Requirements for the connection of generation equipment in parallel with public distribution networks

DIN V VDE V 0126-1-1:2006-02 (4.1 Functional safety)

Automatic disconnection device between a generator and the public low-voltage grid

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

Report number:14TH0397-G99/1_xCertificate number:U19-0489

Certification program: Date of issue: NSOP-0032-DEU-ZE-V01 2019-08-20

Certification body

Certification body Bureau Veritas Consumer Products Services Germany GmbH accredited according to DIN EN ISO/IEC 17065 A partial representation of the certificate requires the written approval of Bureau Veritas Consumer Products Services Germany GmbH

cps-hamburg@de.bureauveritas.com www.bureauveritas.de/cps

Appendix A2-3 Compliance	Verification Report for Inv	verter Connected Power Gener	rating Modules				
Extract from test report acc	ording to the Engineering	Recommendation G99	Nr. 14TH0397-G99/1_				
Type Approval and declarat	ion of compliance with the	e requirements of Engineering	Recommendation G99.				
PGM Technology:	Photovoltaic inverter						
Manufacturer / applicant:	SMA Solar Technology	AG					
Address:	Sonnenallee 1 34266 Niestetal Germany						
Tel	+49 5619522-0	Fax:	+49 5619522-100				
Email:	info@SMA.de	Website:	www.SMA.de				
		·					
Rated values	SB1.5-1VL-40	SB2.0-1VL-40	SB2.5-1VL-40				
Maximum rated capacity	1,5 kW	2,0 kW	2,5 kW				
Rated voltage		230V					
Firmware version	Beginning with V3.0.1.R						
Measurement period:	2018-07-10 to 2018-07-	2018-07-10 to 2018-07-11, 2019-06-24 to 2019-07-31					

Description of the structure of the power generation unit:

The power generation unit is equipped with a PV and line-side EMC filter. The power generation unit has no galvanic isolation between DC input and AC output (transformer). Output switch-off is performed with single-fault tolerance based on two seriesconnected relays in line and neutral. This enables a safe disconnection of the power generation unit from the network in case of error.

Differences between Generating Units:

The models SB1.5-1VL-40, SB2.0-1VL-40 and SB2.5-1VL-40 are based on the same hardware platform, use the same control unit and software.

The above stated Generating Units are tested according the requirements in the Engineering Recommendation G99/1. Any modification that affects the stated tests must be named by the manufacturer/supplier of the product to ensure that the product meets all requirements of the Engineering Recommendation G99/1.

Appendix A2-3 Compliance	Verification Report for Inverter Connected Power Generating	g Modules
Extract from test report acc	cording to the Engineering Recommendation G99	Nr. 14TH0397-G99/1_x
Operating Range.		
Test 1	Voltage = 85% of nominal (195,5 V) Frequency = 47 Hz Power Factor = 1 Period of test 20 s	
Connection:	Always connected	
Limit:	Always connected	
Test 2	Voltage = 85% of nominal (195,5 V) Frequency = 47.5 Hz Power Factor = 1 Period of test 90 minutes	
Connection:	Always connected	
Limit:	Always connected	
Test 3	Voltage = 110% of nominal (253 V) Frequency = 51.5 Hz Power Factor = 1 Period of test 90 minutes	
Connection:	Always connected	
Limit:	Always connected	
Test 4	Voltage = 110% of nominal (253 V) Frequency = 52.0 Hz Power Factor = 1 Period of test 15 minutes	
Connection:	Always connected	
Limit:	Always connected	
Test 5	Confirm that the Power Generating Module is cap Distribution Network and operate at rates of chan- measured over a period of 500 ms. Note that this is r site.	ge of frequency up to 1 Hzs ⁻¹ as
Connection:	Always connected	
Limit:	Always connected	

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules Extract from test report according to the Engineering Recommendation G99 Nr. 14TH0397-G99/1 x Protection. Voltage tests. Phase 1 Function Setting **Trip test** No trip test Voltage Time delay Voltage / time Voltage **Time delay** Confirm [V] [V] no trip [s] [s] 188V/ U/V 184 2,5 184,2 2,527 No trip 5s 180V / No trip 2,45s 258,2V O/V stage 1 262,2 1,0 263.0 1,028 No trip 5,0s 269,7V 0,5 O/V stage 2 273,7 274,9 0,530 No trip

Note. For Voltage tests the Voltage required to trip is the setting $\pm 3,45V$. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting $\pm 4V$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

0,95s 277,7V

0.45s

No trip

Protection. Frequ	ency tests.						
Function	unction Setting		Trip	test	No trip test		
	Frequency [Hz]	Time delay [s]	Frequency [Hz]	Time delay [s]	Frequency / time	Confirm no trip	
U/F stage 1	47,5	20	47,49	20,072	47,7Hz / 30s	No trip	
U/F stage 2	47	0,5	46,99	0,574	47,2Hz / 19,5s	No trip	
					46,8Hz / 0,45s	No trip	
O/F stage 2	52	0,5	52,00	0,578	51,8Hz / 120s	No trip	
	-				52,2Hz / 0,45s	No trip	

Note. For Frequency Trip tests the Frequency required to trip is the setting $\pm 0,1$ Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting $\pm 0,2$ Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules Extract from test report according to the Engineering Recommendation G99 Nr. 14TH0397-G99/1 x Protection. Loss of Mains. Inverters tested according to BS EN 62116. 33% of 66% of 100% of 66% of 100% of Balancing load on 33% of islanded network -5% Q +5% P -5% Q -5% P +5% Q +5% Q Test 22 Test 12 Test 5 Test 31 Test 21 Test 10 Trip time. Ph1 0,372 0,372 0,398 0,378 0,380 0,385 fuse removed [s]

Note. Trip time limit is 0,5s. For technologies which have a substantial shut down time this can be added to the 0,5s in establishing that the trip occurred in less than 0,5s maximum. Shut down time could therefore be up to 1,0s for these technologies.

Protection. Re-connection timer.

Test should prove that the reconnection sequence starts in no less than 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 10.1.

Over Voltage							
Time delay	Measured delay						
20s	;			23,45			
	U	nder Vo	ltage				
Time delay	setting			Measured delay			
20s	;			23,44			
	Ov	er Freq	uency				
Time delay	setting			Measured delay			
20s	;		28,64				
	Und	der Fred	luency				
Time delay	setting			Measured delay			
20s	;		28,96				
	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limit of table 1.						
	At 266,2V	At 266,2V At 180,0V			At 52,1Hz		
Confirmation that the Generating Unit does not re- connect.	No reconnection	No	econnection	No reconnection	No reconnection		

Protection. Frequency change, Stability test.								
	Start Frequency [Hz]	Change	Test Duration	Confirm no trip				
Positive Vector Shift	49,5	+50 degrees		No trip				
Negative Vector Shift	50,5	-50 degrees		No trip				
Positive Frequency drift	49,0 to 51,0	+0,95Hz/sec	2,1s	No trip				
Negative Frequency drift	51,0 to 49,0	-0,95Hz/sec	2,1s	No trip				

Appendix A2-3 Compliance Ver	fication Repo	ort for Inverte	r Connected	Power Gener	ating Module	es		
Extract from test report according to the Engineering Recommendation G99 Nr. 14TH0397-G99/1_x								
Limited Frequency Sensitive M	ode – Over Fr	equency						
1-min mean value [Hz]:	a) 50,00	b) 50,45	c) 50,70	d) 51,15	e) 50,70	f) 50,45	g) 50,00	
1. Measurement a) to g): Active	power outpu	t > 80% Pn						
Frequency [Hz]:	50,00	50,45	50,70	51,14	50,70	50,45	50,00	
P _{expected} [kW]:	N/A	2,46	2,40	2,29	2,40	2,46	N/A	
Pmeasured [kW]:	2,51	2,47	2,35	2,12	2,35	2,48	2,51	
2. Measurement a) to g): Active	power outpu	t 40% and 60	% after freezi	ng > 80% Pn				
Frequency [Hz]:	50,00	50,45	50,70	51,14	50,70	50,45	50,00	
P _{expected} [kW]:	N/A	1,23	1,20	1,15	1,20	1,23	N/A	
Pmeasured [kW]:	1,25	1,24	1,18	1,07	1,18	1,24	1,37	

Output Power with falling Frequency								
Frequency setpoint [Hz]:	50,00	49,50	49,00	48,00	47,60	47,10		
Frequency [Hz]:	50,00	49,50	49,0	48,0	47,60	47,1		
Active power [kW]:	2510	2,510	2514	2514	2510	600		

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 14TH0397-G99/1_x

Power Quality. Harmonics.

SSE	G rating per phase (rpp)				
		At 45-55% of rated output 1,25 kW		ted output kW		
Harmonic	Measured Value (MV) in [A]	Measured Value (%) in [A]	Measured Value (MV) in [A]	Measured Value (%) in [A]	Limit in BS EN61000-3-2 in Amps	Higher limi for odd harmonics 2 and above
2nd	0,020	0,089	0,025	0,111	1,080	
3rd	0,048	0,213	0,096	0,426	2,300	
4th	0,003	0,013	0,002	0,009	0,430	
5th	0,029	0,129	0,035	0,155	1,140	
6th	0,003	0,013	0,002	0,009	0,300	
7th	0,019	0,084	0,023	0,102	0,770	
8th	0,002	0,009	0,002	0,009	0,230	
9th	0,014	0,062	0,015	0,067	0,400	
10th	0,002	0,009	0,002	0,009	0,184	
11th	0,012	0,053	0,009	0,040	0,330	
12th	0,001	0,004	0,002	0,009	0,153	
13th	0,012	0,053	0,011	0,049	0,210	
14th	0,001	0,004	0,001	0,004	0,131	
15th	0,011	0,049	0,010	0,044	0,150	
16th	0,001	0,004	0,001	0,004	0,115	
17th	0,010	0,044	0,010	0,044	0,132	
18th	0,001	0,004	0,001	0,004	0,102	
19th	0,008	0,035	0,007	0,031	0,118	
20th	0,001	0,004	0,001	0,004	0,092	
21th	0,007	0,031	0,007	0,031	0,107	0,160
22th	0,001	0,004	0,001	0,004	0,084	
23th	0,006	0,027	0,007	0,031	0,098	0,147
24th	0,001	0,004	0,001	0,004	0,077	
25th	0,005	0,022	0,008	0,035	0,090	0,135
26th	0,001	0,004	0,001	0,004	0,071	
27th	0,003	0,013	0,008	0,035	0,083	0,124
28th	0,001	0,004	0,001	0,004	0,066	
29th	0,003	0,013	0,007	0,031	0,078	0,117
30th	0,001	0,004	0,001	0,004	0,061	
31th	0,002	0,009	0,006	0,027	0,073	0,109
32th	0,001	0,004	0,001	0,004	0,058	
33th	0,002	0,009	0,007	0,031	0,068	0,102
34th	0,001	0,004	0,001	0,004	0,054	
35th	0,001	0,004	0,007	0,031	0,064	0,096
36th	0,001	0,004	0,001	0,004	0,051	
37th	0,002	0,009	0,007	0,031	0,061	0,091
38th	0,001	0,004	0,001	0,004	0,048	
39th	0,004	0,018	0,007	0,031	0,058	0,087
40th	0,001	0,004	0,001	0,004	0,046	

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules								
Extract from test report according to the Engineering Recommendation G99 Nr. 14TH0397-G99/1_>								
Power Quality. Pov	wer factor.							
Output power	216,2V	230V	253V	Measured at three voltage levels and at full				
20%	0,999	0,999	0,999	output. Voltage to be maintained within ±1,5% of the stated level during the test.				
50%	0,999	0,999	0,999					
75%	0,999	0,999	0,999					
100%	0,999	0,999	0,999					
Limit	>0,95	>0,95	>0,95					

Power Quality. Voltage fluctuation and Flicker.								
	Starting			Stopping			Running	
dmax	dc	d(t)	dmax	dc	d(t)	Pst	Plt 2 hours	
0,0%	0,0%	0%	0,0%	0,0%	0%	0,07	0,07	
4%	3,3%	3,3% 500ms	4%	3,3%	3,3% 500ms	1,0	0,65	
R		0,4	Ω		XI	0,25	Ω	
	dmax 0,0% 4%	Starting dmax dc 0,0% 0,0% 4% 3,3%	Starting dmax dc d(t) 0,0% 0,0% 0% 4% 3,3% 3,3% 500ms 500ms	Starting dmax dc d(t) dmax 0,0% 0,0% 0% 0,0% 0,0% 0,0% 4% 4% 3,3% 3,3% 4% 500ms 4% 500ms 500ms	Starting Stoppin dmax dc d(t) dmax dc 0,0% 0,0% 0% 0,0% 0,0% 4% 3,3% 3,3% 4% 3,3%	Starting Stopping dmax dc d(t) dmax dc d(t) 0,0% 0,0% 0% 0,0% 0,0% 0% 0% 4% 3,3% 3,3% 4% 3,3% 3,3% 500ms	Starting Stopping Run dmax dc d(t) dmax dc d(t) Pst $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,0\%$ $0,07$ 4% $3,3\%$ $3,3\%$ 4% $3,3\%$ $3,3\%$ $1,0$	

Power Quality. DC injection.							
Test level power [%]	10	55	100				
Recorded value [mA]	3	2	8				
Recorded value [%]	0,03	0,01	0,08				
Limit [%]	0,25	0,25	0,25				

source*

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 14TH0397-G99/1_x

Fault level Contribution.									
Parameter	Symbol	Value	Time after fault	Volts [V]	Amps [A]				
Peak Short Circuit current	lp	N/A	20ms	28,56	11,68				
Initial Value of aperiodic current	А	N/A	100ms	28,43	11,85				
Initial symmetrical short-circuit current*	l _k	N/A	250ms	28,44	11,78				
Decaying (aperiodic) component of short circuit current*	idc	N/A	500ms	28,48	11,75				
Reactance/Resistance Ratio of	X/R	N/A	Time to	2,517	In seconds				

For rotating machines and linear piston machines the test should produce a 0s - 2s plot of the short circuit current as seen at the Generating Unit terminals.

Trip [s]

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Self Monitoring – Solid state switching.	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.	N/A
Note. Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then th output drops to 0. In this case the relays on the output will also open (Functional safety of the internal automat device according to VDE 0126-100).	

Logic Interface (input port)	Р
Confirm that an input port is provided and can be used to shut down the module.	Yes