

Form A2-3: Compliance Verification Report for Type A Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

Where the **Manufacturer** is seeking to obtain **Type Tested** status for an **Interface Protection** device the appropriate section of Form A2-4 should be used.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form shall be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note: Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance shall be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

PGM technology		Grid-tied photovoltaic inverter		
Manufacturer name		FOXESS Co., Ltd.		
Address		Room A203, Building C, No 205, Binghai Six Road, New Airport Industry Area, Longwan District, Wenzhou, Zhejiang Province		
Tel	0510-68092998	Web site	www.fox-ess.com	
E:mail info@fox-ess.com				
Registered Capacity		4.6/5.0/6.0 kW		

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGM**s tests marked with * may be carried out at the time of commissioning (Form A4). Insert Document reference(s) for **Manufacturers' Information**

Tested option:	1. Fully Type Tested	2. Partially Type Tested	3. One-off Manufacturers'. Info.	4. Tested on Site at time of Commissioning
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission		N/A	N/A	N/A
1. Operating Range	N/A	~		
2. PQ – Harmonics		✓		
3. PQ – Voltage Fluctuation and Flicker		✓		
4. PQ – DC Injection (Power Park Module s only)		×		
5. Power Factor (PF)*		×		
6. Frequency protection trip and ride through tests*		✓		
7. Voltage protection trip and ride through tests*		✓		
8. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*		1		
9. LFSM-O Test*		×		
10. Protection – Reconnection Timer*		✓		
11. Fault Level Contribution		×		

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGMs** tests marked with * may be carried out at the time of commissioning (Form A4).

Insert Document reference(s) for Manufacturers' Information

Tested option:	1. Fully Type Tested	2. Partially Type Tested	3. One-off Manufacturers'. Info.	4. Tested on Site at time of Commissioning
12. Self-monitoring Solid State Switch		NA		
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*		NA		
14. Logic Interface (input port)*		✓		

* may be carried out at the time of commissioning (Form A.2-4).

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer**'s reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the product meets all the requirements of EREC G99.

Signed	wake. Wu	On behalf of	FOXESS Co., Ltd.
	00000		

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Five tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Power Park Module the PV primary source may be replaced by a DC source.

In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover Inverter/rectifier may be replaced by a DC source.

Test 1	Test 1	
Voltage = 85% of nominal (195.5 V), Frequency = 47 Hz, Power Factor = 1, Period of test 20 s	6000 5000 4000 2000 2000 0 0 0 0 0 0 0 0 0 0 0 0	50 49.5 49 48.5 48 47.5 47 46.5 46 45.5 45
Test 2	Test 2	
	IESL Z	
Voltage = 85% of nominal (195.5 V),	6000	50 49.5
Voltage = 85% of nominal (195.5 V), Frequency = 47.5 Hz, Power Factor = 1, Period of test 90 minutes		
Frequency = 47.5 Hz, Power Factor = 1,	6000 5000 4000 3000	49.5 49 48.5
Frequency = 47.5 Hz, Power Factor = 1,	6000	49.5 49 48.5 48 47.5

	raye J	
Test 3	Test 3	
Voltage = 110% of nominal (253 V).,	7000 6000	52 51.9
Frequency = 51.5 Hz, Power Factor = 1,	5000	51.8 51.7
Period of test 90 minutes	3000	51.6 51.5
	2000	51.4 51.3
	1000	51.2 51.1
	0 0 0 0 0 0 0 0 0 0 0 0 0 0	51
Test 4	Test 4	
Voltage = 110% of nominal (253 V),		52.2
Frequency = 52.0 Hz, Power Factor = 1,		52
Period of test 15 minutes	4000	51.9
	3000	51.8
		51.7
		51.6
	1000847 1000814 1000914 1001005 10011229 10011229 10011229 10011234 10011347 10013478 1001535 1001535 1001535 1001555 1001555 1001555 1001555 1001555 1001555 1001555 1001555 1001555 1001555 1001555 1001555 1002552 1002552 10022331 10022331 1002252 1002222 1002252 10025252 10025	51.5
	Voltage Power Frequency	
Test 5 RoCoF withstand		
Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs ⁻¹ as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site.	No disconnection occured. Test passed.	

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

Power Generating Module rating per phase (rpp)		6.0	kVA		Page 6 c % = Measured) x 23/rating per VA)	
Harmonic	At 45-55% c Registered		100% of Registered Capacity		Limit in B	S EN 61000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.023	0.087%	0.022	0.085%	8%	8%
3	0.1587	0.608%	0.356	1.364%	21.6%	Not stated
4	0.0154	0.059%	0.016	0.060%	4%	4%
5	0.0819	0.314%	0.135	0.518%	10.7%	10.7%
6	0.0115	0.044%	0.014	0.053%	2.67%	2.67%
7	0.0591	0.227%	0.057	0.217%	7.2%	7.2%
8	0.0115	0.044%	0.013	0.049%	2%	2%
9	0.0457	0.175%	0.043	0.163%	3.8%	Not stated
10	0.0113	0.043%	0.012	0.048%	1.6%	1.6%
11	0.0402	0.154%	0.045	0.171%	3.1%	3.1%
12	0.0112	0.043%	0.012	0.048%	1.33%	1.33%
13	0.037	0.142%	0.033	0.128%	2%	2%
THD ¹		1.609%		1.565%	23%	13%
PWHD ²		2.988%		1.675%	23%	22%
Power Generating Module rating per phase (rpp)		5.0	kVA		c % = Measured) x 23/rating per /A)	
Harmonic	Harmonic At 45-55% of Registered Capacity		100% of Registered Capacity		Limit in B	S EN 61000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.029	0.132%	0.030	0.138%	8%	8%

¹ THD = Total Harmonic Distortion

² PWHD = Partial Weighted Harmonic Distortion

	-			•	-	Page 7	
3	0.144	0.662%	0.268	1.235%	21.6%	Not stated	
4	0.013	0.061%	0.013	0.062%	4%	4%	
5	0.080	0.370%	0.110	0.508%	10.7%	10.7%	
6	0.011	0.049%	0.013	0.060%	2.67%	2.67%	
7	0.059	0.272%	0.056	0.259%	7.2%	7.2%	
8	0.011	0.049%	0.012	0.057%	2%	2%	
9	0.046	0.211%	0.048	0.220%	3.8%	Not stated	
10	0.011	0.049%	0.013	0.058%	1.6%	1.6%	
11	0.040	0.183%	0.043	0.198%	3.1%	3.1%	
12	0.011	0.049%	0.012	0.055%	1.33%	1.33%	
13	0.035	0.162%	0.036	0.164%	2%	2%	
THD ³		1.861%		1.473%	23%	13%	
PWHD ⁴		3.601%		1.973%	23%	22%	
	Power Generating Module rating per phase (rpp)		4.6	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)		
Harmonic	At 45-55% o Registered		100% of Registered Capacity		Limit in BS EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.026	0.130%	0.031	0.156%	8%	8%	
3	0.142	0.710%	0.244	1.218%	21.6%	Not stated	
4	0.013	0.063%	0.014	0.072%	4%	4%	
5	0.082	0.410%	0.103	0.517%	10.7%	10.7%	
6	0.011	0.056%	0.011	0.056%	2.67%	2.67%	
7	0.058	0.289%	0.059	0.293%	7.2%	7.2%	

³ THD = Total Harmonic Distortion

⁴ PWHD = Partial Weighted Harmonic Distortion

						Faye o
8	0.010	0.051%	0.011	0.055%	2%	2%
9	0.048	0.241%	0.048	0.240%	3.8%	Not stated
10	0.011	0.055%	0.011	0.056%	1.6%	1.6%
11	0.041	0.205%	0.042	0.212%	3.1%	3.1%
12	0.011	0.053%	0.011	0.057%	1.33%	1.33%
13	0.035	0.173%	0.037	0.185%	2%	2%
THD ⁵		1.976%		1.467%	23%	13%
PWHD ⁶		3.767%		2.123%	23%	22%

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

	Starting			Stopping	9		Running	
	d max	d c	d(t)	d max	d c	d(t)	P st	P It 2 hours
Measured Values at test impedance	0.14	0.06	0	0	0	0	0.10	0.10
Normalised to standard impedance	0.14	0.06	0	0	0	0	0.10	0.10
Normalised to required maximum impedance	NA	NA	NA	NA	NA	NA	NA	NA
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65
Test Impedance	R	0.4	Ω		XI	0.25		Ω

⁵ THD = Total Harmonic Distortion

⁶ PWHD = Partial Weighted Harmonic Distortion

						ŀ	Page 9
Standard Impedance	R	0.24 *	Ω	XI	0.15 *		Ω
Impedance		0.4 ^			0.25 ^		
Maximum Impedance	R		Ω	XI			Ω
* Applies to t	hree phase and sp	lit single p	hase Power Genera	ting Modul	es.		
^ Applies to s a three phas	e .	r Generat	ing Module and Po	wer Genera	ating Modu	ile s using tv	vo phases on
			ments the following f e Power Factor of th				
Normalised v	value = Measured \	alue x ref	erence source resista	ance/measu	ired source	resistance	at test point
Single phase	e units reference sc	urce resis	tance is 0.4 Ω				
Two phase u	nits in a three phas	se system	reference source res	sistance is 0	0.4 Ω		
Two phase u	nits in a split phase	e system r	eference source resi	stance is 0.2	24 Ω		
Three phase	units reference so	urce resist	ance is 0.24 Ω				
	ower Factor of the of the Standard Im		s under 0.98 then the	e XI to R ra	tio of the te	est impedan	ce should be
The stopping	test should be a tr	ip from ful	l load operation.				
			ly with the particular of the test need to b			n the testing	notes for the
Test start da	te	20	020-01-19	Test end date		2	2020-01-19
Test location		DEKRA Testing Lab No. 99, Hongye Road, Suzhou Industrial Park , Suzhou, 215006, Jiangsu, P.R. China					
4. Power quality – DC injection: The tests should be carried out on a single Generating Unit . Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase Inverter has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.					nas a current		
			6.0KW				
Test power le	evel		10%	55%	%	1	00%
Recorded va	lue in Amps		0.0103	0.00	25	-0.	0152
as % of rated	AC current		0.039%	0.01	0%	-0.0	058%
Limit			0.25%	0.25	5%	0.	25%
			5.0KW				
Test power le	evel		10%	55%		1	00%
				-			

13346 17	
	Page 10

	1						Page 10
Recorded value in Amps		0.0035		-0.00)66		-0.0167
as % of rated AC current	0.02%			-0.03	3%		-0.08%
Limit	0.25%			0.25	5%		0.25%
		4.6	6KW				
Test power level		10%		559	%		100%
Recorded value in Amps		-0.0029		-0.00)70		-0.0166
as % of rated AC current	-	-0.015%		-0.03	5%		-0.083%
Limit		0.25%		0.25	5%		0.25%
5. Power Factor : The tests s carried out at three voltage le stated level during the test. Th	vels and at	Registered (Capac	ity . Voltage t	o be mainta	ained v	vithin ±1.5% of the
		6.0	KW				
Voltage	0.94	pu (216.2 V)	1 pu (230 V)		1.1 pu (253 V)		
Measured value	0.996			0.996		0.998	
Power Factor Limit	>0.95			>0.95		>0.95	
		5.0)KW				
Voltage	0.94	pu (216.2 V)		1 pu (2	30 V)	1	I.1 pu (253 V)
Measured value	0.998			0.99	98		0.998
Power Factor Limit		>0.95		>0.95		>0.95	
		4.6	бKW				
Voltage	0.94	pu (216.2 V)		1 pu (2	30 V)	1	I.1 pu (253 V)
Measured value	0.997			0.997		0.997	
Power Factor Limit		>0.95		>0.95			>0.95
6. Protection – Frequency te	ests: These	tests should	be car	ried out in ac	cordance v	vith the	e Annex A.7.1.2.3.
Function Setting		Trip test			"No trip te	ests"	
Frequency	Time delay	Frequenc y	Time	delay	Frequenc /time	у	Confirm no trip
U/F 47.5 Hz stage 1	20 s	47.48 Hz	20.35s		47.7 Hz 30 s		No trip
U/F 47 Hz stage 2	0.5 s	46.99 Hz	0.539	6	47.2 Hz 19.5 s		No trip

						гаусті
					46.8 Hz 0.45 s	No trip
O/F	52 Hz	0.5 s	52.03Hz	0.54s	51.8 Hz 120.0 s	No trip
					52.2 Hz 0.45 s	No trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	183.7V	2.560s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	262.3V	1.045s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.8V	0.533s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and imbalance	33% -5% Q Test 22	66% -5% Q Test 12	100% -5% P Test 5	33% +5% Q Test 31	66% +5% Q Test 21	100% +5% P Test 10
Trip time. Limit is 0.5s	0.336 s	0.292 s	0.381 s	0.335 s	0.210 s	0.265 s

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.

•			-	12

				1			Page 12
Positive Vector Shift	49.5 Hz	+50 degrees			No trip		
Negative Vector Shift	50.5 Hz	- 50 degrees			No trip		
Loss of Mains F A.7.1.2.6.	Protection, Ro	CoF Sta	ability test: Th	nis test sho	ould be carried out in	accord	ance with Annex
Ramp range	Test frequenc	y ramp:		Test Dur	ation		Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹			2.1 s			No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹			2.1 s			No trip
9. Limited Freq specific threshold This test should b	I frequency of 5	50.4 Hz	and Droop of ²	10%.	st: The test should b 3.	e carri	ed out using the
Active Power rest injection tests are							Y
Alternatively, sim	ulation results	should b	e noted below	:			
Test sequence at Registered Capacity >80%	Measured Ac Power Outpu		Frequency		Primary Power Sour	ce	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	6046.0)	50.00		- DC SOURCE		NA
Step b) 50.45Hz ±0.05Hz	5988.3	5	50.45				10.48%
Step c) 50.70Hz ±0.10Hz	5683.4		50.70				10.00%
Step d) 51.15Hz ±0.05Hz	5129.6	6	51.15				9.90%
Step e) 50.70Hz ±0.10Hz	5675.3	}	50.70				9.79%
Step f) 50.45Hz ±0.05Hz	5986.2		50.45				10.11%
Step g) 50.00Hz ±0.01Hz	6035.8	}	50.00				NA
Test sequence at Registered Capacity 40% - 60%	Measured A Power Outpu		Frequency		Primary Powe Source	er	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	3030.6	;	50.00				NA

enumer	π	0	20	20
	Ρ	a	ne	13

Step b) 50.45Hz 3001.3 50.45 ±0.05Hz 2854.5 50.70	10.34%		
Step c) 50.70Hz 2854.5 50.70			
±0.10Hz	10.33%		
Step d) 51.15Hz 2576.2 51.15 DC SOU ±0.05Hz DC SOU <	RCE 10.00%		
Step e) 50.70Hz 2850.2 50.70 ±0.10Hz 50.70 50.70	10.08%		
Step f) 50.45Hz 2998.9 50.45 ±0.05Hz 50.45 50.45	9.56%		
Step g) 50.00Hz 3035.2 50.00 ±0.01Hz 50.00 50.00	NA		
10. Protection – Re-connection timer.			
Test should prove that the reconnection sequence starts after a minimum dela voltage and frequency to within the stage 1 settings of Table 10.1.	ay of 20 s for restoration of		
Time delay settingMeasured delay delayChecks on no reconnection when voltage or outside stage 1 limits of Table 10.1.	frequency is brought to just		
60s 91s At 1.16 pu (266.2 V) At 0.78 pu (180.0 V) At 47.	4 Hz At 52.1 Hz		
Confirmation that the Power Generating Module does not re-connect.NoNoNoreconnectionreconnectionreconnectionreconnection	No nection reconnection		
11. Fault level contribution : These tests shall be carried out in accordar A.7.1.5.	nce with EREC G99 Annex		
For Inverter output			
Time after fault Volts Amps			
20ms 206V 17.4A	17.4A		
100ms 181 V 0 A	0 A		
250ms 93.75 V 0 A	0 A		
500ms 56.25 V 0 A	0 A		
Time to trip3.6msIn seconds			
12. Self-Monitoring solid state switching: No specified test requirements. Re	fer to Annex A.7.1.7.		
It has been verified that in the event of the solid state switching device failing the Power Park Module , the voltage on the output side of the switching devic a value below 50 volts within 0.5 s.			
	I		

•••	~	20	20
Ρ	a	ge	14

Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	NA
14. Logic interface (input port).	
Confirm that an input port is provided and can be used to shut down the module.	Yes
Additional comments.	