

MODEL 1301

Compact Digital MultiMeter

Instruction Manual

1. Introduction

The Triplett Model 1301 multimeter is a 3 1/2 digit, handheld digital multimeter with automatic power off and a backlit LCD display. Using a Large Scale Integration (LSI) integrated circuit, the multimeter is designed for stability and accuracy. The resilient outer molded cover provides additional protection from the occasional fall, and the threaded probe tips and screw on insulated clips provide for secure, hands-off measurements. The meter can measure AC and DC voltage, AC and DC current, resistance, capacitance, temperature, and forward diode voltage drop. It can also perform an audible continuity test, non-contact AC voltage detection, and test both 1.5V and 9V batteries.

2. Product Features

- 1) Test lead holder.
- 2) CDS sensor for automatic backlight brightness control.
- 3) NCV Detection area (top of DMM case).
- 4) NCV Detection voltage detected indicator (red LED).
- 5) NCV Detection mode activated indicator (green LED)
- 6) LCD display with 🖽 (Low Battery), NCV, and DH (Hold) annunciators.
- 7) POWER Button: Press the Power Button to turn the unit on or off.
- 8) NCV Button: Press and hold to activate NCV mode.
- 9) DISPLAY HOLD Button: Press the "HOLD" key to lock the present value on the display. The "DH" sign will appear on the display while the hold function is active. Press it again to exit and resume normal display updating.
- 10) Rotary Switch: Use this switch to select test functions and ranges.
- 11) **COM:** COM and Temperature "-" Input Jack.
- 12) **10A:** 10A Input Jack, unfused.
- 13) **VΩmA**: V/mA/BATT/ **Ω** → □ and Temperature "+" Input Jack, fused at 200mA, 500V
- 14) Meter case
- 15) Protective molded cover

3. Safety Information

- 3-1 The meter is designed according to IEC-1010 concerning electronic measuring instruments with an over-voltage category level of 600V (CAT III) and pollution level 2. DO NOT USE THIS METER FOR CAT IV APPLICATIONS.
- 3-2 Follow all safety and operating instructions to ensure that the meter is used safely and is kept in good operating condition.
- 3-3 Safety symbols:
 - \triangle Important safety information, refer to the operating manual.
 - Dangerous voltage may be present.
 - ☐ Double insulation (protection Class II)

4. Cautions and Warnings

4-1 To maintain product safety, use the provided test leads. Damaged test leads should be replaced with the same model or test leads with the same electrical specifications.

- **4-2** Do not use with the battery cover removed.
- **4-3** Always set the rotary switch to the correct position for measurement.
- 4-4 Do not exceed the input limits.
- **4-5** Do not change the rotary switch setting when the leads are connected to an energized circuit.
- 4-6 Use caution when measuring voltages higher than 60V DC or 30V AC.
- 4-7 Replace fuse with fuse of the same rating.
- **4-8** To conserve battery life, always turn the meter off when measurements are completed.

5. General Characteristics

- 5-1 Max Voltage between input terminal and Earth Ground: CAT III 600V
- **5-2** Over-range Indication: display "1" or "-1" for the most significant digit
- 5-3 Low Battery Indication: E is displayed
- 5-4 Maximum LCD Display: 1999 (3 1/2 digits)
- 5-5 Manual range selection
- 5-6 Auto Power Off: The meter will switch to standby mode when it has been on for approximately 20 minutes. Press the "POWER" button twice to power on the meter again
- 5-7 Fuse protection: Fast acting 200mA/500V
- 5-8 Power supply: 9V battery (6F22 or NEDA 1604)
- **5-9** Operating Temperature: 0°C to 40°C (relative humidity <85%)
- **5-10** Storage Temperature: -10°C to 50°C (relative humidity <85%)
- 5-11 Dimension: 150x106x36mm
- 5-12 Weight: approx. 250g (including battery)

6. Measurement Specifications

Accuracy is specified from 18°C to 28°C (64°F to 82°F) with relative humidity below 70%.

DC Voltage			
Range	Resolution	Accuracy	
2V	1mV	10 TO (5 1 1 0 1 1 1)	
20V	10mV	±(0.5% of rdg + 2 digits)	
200V	100mV		
600V	1V	±(0.8% of rdg + 2 digits)	

Impedance: 10MΩ

Overload protection: 600V DC or AC

AC Voltage			
Range	Resolution	Accuracy	
200V	100mV	±(1.2% of rdg + 5 digits)	
600V	1V		

Impedance: 10MΩ

Overload protection: 600V DC or AC rms

Frequency Range: 40 to 400Hz

Response: Average, calibrated equivalent to RMS of sine wave

DC Current			
Range	Resolution	Accuracy	
200mA	100μΑ	±(1.2% of rdg + 2 digits)	
10A	10mA	±(2.0% of rdg + 3 digits)	

Overload protection: Fast Acting 200mA / 500V fuse

10A input is not fuse protected. Apply no more than 10A for less than 10 seconds

AC Current			
Range	Resolution	Accuracy	
200mA	100μΑ	±(1.5% of rdg + 3 digits)	
10A	10mA	±(2.5% of rdg + 5 digits)	

Overload protection: Fast Acting 200mA / 500V fuse

10A input is not fuse protected. Apply no more than 10A for less than 10 seconds

Frequency Range: 40 to 400Hz

Response: Average, calibrated equivalent to RMS of sine wave

Resistance			
Range	Resolution	Accuracy	
200Ω	0.1Ω	±(1.0% of rdg + 3 digits)	
2kΩ	1Ω		
20kΩ	10Ω	±(1.0% of rdg + 2 digits)	
200kΩ	100Ω		
2ΜΩ	1kΩ		
20ΜΩ	10kΩ	±(1.5% of rdg + 3 digits)	

Overload protection: 500V AC / DC

Temperature			
Range Accuracy			Resolution
∘⊏	-4~302°F	± (5°F+ 2 digits)	10□
	302~1832°F	± (3% of rdg + 3 digits)	

Thermocouple: NiCr-NiSi K-type (supplied) Overload protection: Fast Acting 200mA / 500V fuse

Battery test			
Range Accuracy Load current Resolution			Resolution
1.5V	±(5.0% of rdg + 5 digits)	Approx. 50mA	1mV
97	±(0.070 01 10g + 0 digito)	Approx. 10mA	10mV

Overload protection: Fast Acting 200mA / 500V fuse

Diode test			
Range	Description	Resolution	
+	Forward voltage drop of diode	1mV	

Overload protection: 500V AC / DC Test Current: Approximately 1mA Open Circuit Voltage: Approximately 3V

Continuity test			
Range	Description	Function	
-1))	0 to 2000Ω	Buzzer sounds if resistance is less than 50Ω	

Overload protection: 500V AC / DC Open circuit voltage: Approximately 3V

Capacitance test			
Range	Description	Resolution	
20μf	±(2.5% of rdg+ 5 digits)	10nF	

--Overload protection: 200mA/500V Fast Fuse

Noncontact Voltage Detection			
Range	Description	Function	
Any	AC Voltage field, 90V -1000V RMS Press & Hold NCV button to activate	Buzzer sounds and red LED lights if AC electric field detected	

7. Operating Instructions

7-1 Before Operation

- 7-1-1 Check battery. If the battery voltage is low, the 🔁 symbol will appear on the LCD display. Replace by removing the (2) screws in the rear panel and lifting the battery cover up.
- **7-1-2** The extstyle eand current. DO NOT EXCEED THESE LIMITS.
- 7-1-3 The rotary switch should be positioned to the proper function and measurement range BEFORE connecting the test leads to the circuit.

7-2 Measuring DC Voltage

- **7-2-1** Connect the black test lead to **COM** jack and red lead to **V\OmegamA** jack. **7-2-2** Set the rotary switch to the desired "**V** $\overline{\cdots}$ " range position.
- 7-2-3 Observing polarity, connect test leads across the circuit component(s) under measurement and read the voltage from the LCD.

- 1. When the quantity to be measured is unknown, set the rotary switch to its highest DC voltage range before connecting the test leads to the circuit.
- 2. When only "1" or "-1" is displayed, it indicates "over range". Either select a higher measurement range or do not continue to measure.
- 3. \triangle Although the meter may measure voltages higher than 600V, it may be damaged or pose a shock hazard or other injury to the user.
- 4. Use caution when measuring high voltages (>60V DC or >30V AC).

7-3 Measuring AC Voltage

- **7-3-1** Connect the black test lead to **COM** jack and red lead to $V\Omega mA$ jack.
- **7-3-2** Set the rotary switch to the desired "V **→**" range position.
- 7-3-3 Observing polarity, connect test leads across the circuit component(s) under measurement and read the voltage from the LCD.

NOTE:

- 1. When the quantity to be measured is unknown, set the rotary switch to its highest AC voltage range before connecting the test leads to the circuit.
- 2. When only "1" or "-1" is displayed, it indicates "over range". Either select a higher measurement range or do not continue to measure.
- 3. A Although the meter may measure voltages higher than 600V, it may be damaged or pose a shock hazard or other injury to the user.

4. Use caution when measuring high voltages (>60V DC or >30V AC).

7-4 Measuring DC Current

- 7-4-1 Connect the black test lead to COM jack and red lead to the $V\Omega mA$ jack for a maximum 200mA current. For a maximum 10A current, move the red lead to the 10A jack.
- 7-4-2 Set the rotary switch to the desired "A --- " range position.
- 7-4-3 Observing polarity, connect test leads in series with the load under measurement.
- 7-4-4 Read current from the LCD.

NOTE:

- 1. When the quantity to be measured is unknown, set the rotary switch to its highest position (200mA or 10A depending on input jack used)
- 2. When only "1" or "-1" is displayed, it indicates "over range". Either select a higher measurement range or do not continue to measure.
- 3. Current above 200mA on the $V\Omega mA$ jack will blow the fuse. The 10A jack is not fused. Do not apply more than 10A. Do not apply 10A for longer than 10 seconds. Allow a 15 minute cooldown.
- 4. If fuse blows, remove meter from circuit under test. Replace fuse by removing the rear battery cover (2 screws) to access fuse.

7-5 Measuring AC Current

- **7-5-1** Connect the black test lead to COM jack and red lead to $V\Omega mA$ jack for maximum 200mA current. For a maximum 10A current, move the red lead to the 10A jack.
- **7-5-2** Set the rotary switch to the desired "A \(\sigma\)" range position.
- 7-5-3 Observing polarity, connect test leads in series with the load under measurement.
- 7-5-4 Read the resistance on the LCD.

NOTE:

- 1. When the quantity to be measured is unknown, set the rotary switch to its highest position (200mA or 10A depending on the jack used) before connecting test leads to the circuit.
- 2. When only "1" or "-1" is displayed, it indicates "over range". Either select a higher measurement range or do not continue to measure.
- 3. Current above 200mA on the $V\Omega mA$ jack will blow the fuse. The 10A jack is not fused. Do not apply more than 10A. Do not apply 10A for longer than 10 seconds. Allow a 15 minute cooldown.
- 4. If fuse blows, remove meter from circuit under test. Replace fuse by removing the rear cover (2 screws) to access fuse

7-6 Measuring Resistance

- **7-6-1** Connect the black test lead to **COM** jack and red lead to **V\OmegamA** jack.
- **7-6-2** Set the rotary switch to the desired Ω range position.
- 7-6-3 Connect the test leads across the resistance under measurement
- 7-6-4 Read the resistance on the LCD.

NOTE:

- 1. DO NOT APPLY VOLTAGE WHEN MEASURING RESISTANCE.
- 2. If "1" or "-1" is displayed, it indicates over range. This means that the test leads are not making connection to the circuit, or the resistance exceeds the measurement ability of the selected range. Select a higher range to obtain a measurement.
- 3. When measuring resistances above $1M\Omega$, the meter may take a few seconds for the reading to stabilize.
- 4. When checking in-circuit resistance, be sure the circuit under test has all power removed and that all capacitors have been fully discharged.

7-7 Measuring Temperature

- 7-7-1 Set the rotary switch to the °F range position.
- 7-7-2 The LCD will show the present temperature of the meter.
- 7-7-3 To use the K-type thermocouple probe, connect the black banana plug of the probe into the COM jack and the red banana plug to the $V\Omega mA$ iack.
- 7-7-4 The temperature of the thermocouple probe tip is displayed on the LCD
- 7-7-5 The probe included with the meter can be used for measuring temperature up to 482 °F. To accurately measure higher temperatures, use a high temperature rated K-type probe.

1. Do not connect the thermocouple probe to a voltage source

7-8 Battery Testing

- **7-8-1** Connect the black test lead to COM jack and red lead to $V\Omega mA$ jack.
- 7-8-2 Set the rotary switch to the proper " 🖭 " or " 🖭 " range position to test either a 1.5V or 9V battery.
- 7-8-3 Connect test leads to the + and terminals of the battery under test
- 7-8-4 The LCD displays the battery's voltage at the rated test current.

7-9 Diode Testing

- 7-9-1 Connect the black test lead to COM jack and red lead to $V\Omega mA$ jack.
- 7-9-2 Set the rotary switch to the " → " position.
- **7-9-3** Connect the red lead to the anode of the diode to be tested, and the black lead to the cathode.
- 7-9-4 The diode's forward voltage drop is displayed on the LCD.

NOTE

- 1. The meter will display the approximate forward voltage drop of the diode.
- If the leads are reversed or not connected, "1" (over range) should be displayed.

7-10 Continuity Testing

- **7-10-1** Connect the black test lead to **COM** jack and red lead to **V\OmegamA** jack.
- **7-10-2** Set the rotary switch to the "→ ")" position.
- 7-10-3 Connect the test leads to the two points of the circuit under test.
- **7-10-4** If there is continuity (resistance is lower than approximately 50Ω) the built-in beeper will sound.

NOTE:

- 1. Do not attempt this measurement on energized circuits.
- 2. If the leads are reversed, not connected, or connected to a resistance more than approximately 2000Ω , "1" (over range) should be displayed

7-11 Measuring Capacitance

- 7-11-1 Connect the black test lead to COM jack and red lead to VΩmA jack.
- 7-11-2 Set the rotary switch at the desired "20uF" range position.
- 7-11-3 Connect test leads across the capacitance to be measured.
- 7-11-4 Read the capacitance from the LCD.

NOTE: Capacitors should be discharged before being tested.

7-12 Non Contact AC Voltage detection

- 7-12-1 With the meter on, on any position of the rotary switch, press and hold the "NCV" button. This activates the Non Contact AC Voltage (NCV) detection circuit, and the NCV green LED will illuminate. The "NCV" symbol will appear on the display.
- 7-12-2 Position the meter so the top is parallel to and in contact with, or next to the conductor. When the AC voltage ≥90V AC RMS, the NCV red LED and green LED will flash and the buzzer will sound.
- 7-12-3 Release the "NCV" key to exit the NCV meter mode.

NOTE:

- 1. Even if the meter doesn't indicate the presence of AC voltage, the volt age may still be present. Do not rely on the non-contact voltage detector to determine the presence of live voltage. Voltage detection may be affected by socket design, insulation thickness, shielding, and other AC voltage field interaction. The NCV detector does not detect DC voltages.
- If the meter test leads are connected and measuring AC voltage, the NCV detector circuit will also indicate AC voltage presence (LEDs and buzzer activation) if NCV mode is activated.
- Proximity of florescent lights, dimmable lights, motors, and other large AC field generating devices can trigger Non-Contact AC Voltage detection function and invalidate the test

8. Battery Replacement

- 8-1 If the battery voltage drops below proper operation range the " E " symbol will appear on the LCD display and the battery should be changed.
- 8-2 Before attempting to remove the rear cover to replace the battery, be certain the test leads have been disconnected from the circuit to avoid electrical shock hazard. Power off the meter and remove the test leads from the banana jacks. To access the battery, remove the (2) screws in the rear cover and lift the cover.
- 8-3 Replace the old battery with the same type battery (9V 6F22 or NEDA 1604).
- **8-4** Replace the rear cover of the meter and reinstall the (2) screws.

9. Fuse replacement

- **9-1** To avoid electrical shock or injury, remove test leads from circuitry before replacing the fuse.
- 9-2 Before attempting to remove the rear cover to replace the fuse, be certain the test leads have been disconnected from the circuit. Power off the meter and remove the test leads from the banana jacks. To access the fuse holder, remove the (2) screws in the rear cover and lift the cover.
- 9-3 Replace the old fuse only with the same type and rating: 6×30mm 200mA/500V fast fuse.
- 9-4 Replace the rear cover and reinstall the (2) screws.

10. Maintenance

- 10-1 Before attempting to remove the battery cover or open the case, be certain that test leads have been disconnected from energized circuitry to avoid electric shock hazard.
- 10-2 Replace the test leads if the any wire is exposed, or if they become damaged.
- 10-3 Do not use harsh chemicals or solvents to clean the meter.
- 10-4 Do not use the meter with the rear cover removed. Injury may result.
- **10-5** If the meter will not be used for more than 1 month, remove the battery to avoid possible damage from battery leakage.

11. Accessories

- 1. Test Leads (2) (red, black): electric rating 1000V 10A
- 2. Clips (2) (red, black)
- 3. "K" type thermocouple probe (1)
- 4. Instruction Manual
- 5. Battery (9V 6F22)
- 6. Fuse, Fast Acting 200mA / 500V

Warranty

Triplett / Byte Brothers extends the following warranty to the original purchaser of these goods for use. Triplett warrants to the original purchaser for use that the products sold by it will be free from defects in workmanship and material for a period of (3) three years from the date of purchase.

This warranty does not apply to any of our products which have been repaired or altered by unauthorized persons in any way or purchased from unauthorized distributors so as, in our sole judgment, to injure their stability or reliability, or which have been subject to misuse, abuse, misapplication, negligence, accident or which have had the serial numbers altered, defaced, or removed. Accessories, including batteries and fuses, are not covered by this warranty.

To register a claim under the provisions of this warranty, please contact the distributor from which you purchased the product from for warranty consideration.

ALL WARRANTIES IMPLIED BY LAW ARE HEREBY LIMITED TO A PERIOD OF THREE YEARS FROM DATE OF PURCHASE, AND THE PROVISIONS OF THE WARRANTY ARE EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES EXPRESSED OR IMPLIED.

The purchaser agrees to assume all liability for any damages and bodily injury which may result from the use or misuse of the product by the purchaser, his employees, or others, and the remedies provided for in this warranty are expressly in lieu of any other liability Triplett may have, including incidental or consequential damages.

Some states (USA ONLY) do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you No representative of Triplett / Byte Brothers or any other person is authorized to extend the liability of Triplett in connection with the sale of its products beyond the terms hereof.

Triplett / Byte Brothers reserves the right to discontinue models at any time, or change specifications, price or design, without notice and without incurring any obligation.

This warranty gives you specific legal rights, and you may have other rights which vary from state to state.

Manchester, NH USA

www.triplett.com

1-800-TRIPLETT

Model 1301 Part Number: 1301 84-907 10/14

Made in China