
Setting Up Raspberry Pi for MIDI
This guide will show how to take a freshly installed Raspberry Pi and have it operated as an
OS-discoverable MIDI I/O device. It will also provide some examples of using various
Python libraries to get MIDI data into and out of the programming environment.

UPDATE – Sep 11, 2021.: This guide has been updated to fix some issues with the latest
Raspberry Pi OS version, you can also download a full image with pre-installed scripts and
fully configured here.

What we need

• Raspberry Pi A+/B+/2/3B/3B+/4B

• MIDI Board for Raspberry Pi

• A MicroSD Card

• Set of 4 Nylon M2.5 Screws

• Set of 4 Nylon M2.5*11mm Female to Female Standoffs

• Set of 4 Nylon M2.5*5mm Male to Female Standoffs

Assembly

Use the nylon screws and standoffs to assembly the Raspberry Pi together with the MIDI
Board, as shown on the image below:

First time setup

We tested all the examples in this document on a Pi 4B using Rasperry Pi OS, version May
2020). The first time, it is necessary to use a screen and keyboard to set the Pi up.
Thereafter, use your method of choice to access the Pi’s OS. All steps are mandatory
unless otherwise stated.

Installation

Update/Upgrade
Perform the update and upgrade as described
here: https://www.raspberrypi.org/documentation/raspbian/updating.md

Network Configuration (Optional)
If you are SSH’ing from another machine into the Pi, it is worthwhile giving the Pi a fixed IP
address:
https://www.modmypi.com/blog/how-to-give-your-raspberry-pi-a-static-ip-address-
update

It is also a good idea to add the network security settings to the Pi so that it will
automatically connect to the network:
https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

Set the Pi Up as a USB OTG Gadget
Open a terminal on the Pi and follow this procedure:

• Set the USB driver to dwc2

echo "dtoverlay=dwc2" | sudo tee -a /boot/config.txt

• Enable the dwc2 driver

echo "dwc2" | sudo tee -a /etc/modules

• Enable the libcomposite driver

echo "libcomposite" | sudo tee -a /etc/modules

• Enable the MIDI gadget

https://www.raspberrypi.org/documentation/raspbian/updating.md
https://www.modmypi.com/blog/how-to-give-your-raspberry-pi-a-static-ip-address-update
https://www.modmypi.com/blog/how-to-give-your-raspberry-pi-a-static-ip-address-update
https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

echo "g_midi" | sudo tee -a /etc/modules

Create the configuration script:

• Create the file

sudo touch /usr/bin/midi_over_usb

• Make it executable

sudo chmod +x /usr/bin/midi_over_usb

• Edit it with Nano

sudo nano /usr/bin/midi_over_usb

Paste the following into the file, making edits to the product and manufacturer strings as
required.

cd /sys/kernel/config/usb_gadget/

mkdir -p midi_over_usb

cd midi_over_usb

echo 0x1d6b > idVendor # Linux Foundation

echo 0x0104 > idProduct # Multifunction Composite Gadget

echo 0x0100 > bcdDevice # v1.0.0

echo 0x0200 > bcdUSB # USB2

mkdir -p strings/0x409

echo "fedcba9876543210" > strings/0x409/serialnumber

echo "OSA Electronics" > strings/0x409/manufacturer

echo "MIDI USB Device" > strings/0x409/product

ls /sys/class/udc > UDC

Exit Nano and save the file (Ctrl+X, Y, return).

Add a call to the script to rc.local, so that it executes on every startup.

sudo nano /etc/rc.local

Add the following line before “exit0”

/usr/bin/midi_over_usb

Exit Nano and save the file and reboot the Pi.

sudo reboot

List the available MIDI ports.

amidi -l

If the MIDI is configured correctly, the last command should output something similar to:

Dir Device Name IO hw:0,0 f_midi
IO hw:0,0 f_midi

Install Python Libraries
This section will explain how to install our preferred libraries for Python 2.x. If you are
using Python 3.x, install mido and rtmidi using the pip3 installl command. You can also
install the packages for both Python versions. We have not experienced any conflicts.

MIDO
Mido is an easy-to-use library for handling MIDI data. It relies on the rt-midi backend,
the asound library, and Jack. Input the following commands in sequence:

pip install mido

sudo apt-get install libasound2-dev

sudo apt-get install libjack0

sudo apt-get install libjack-dev

pip install python-rtmidi

Do a quick Python command line check:

python

import mido

mido.get_output_names()

The output should show one ‘Midi Through’ port and one additional port. If this is the case,
all is well.

*Note: in Mido, the port name is the entire string enclosed in single quotes, but it is
possible to truncate the name to the string before the colon. On this machine, the string is:

'f_midi:f_midi 16:0'.

For example, these two commands are equivalent:

port = mido.open_output('f_midi:f_midi 16:0')

port = mido.open_output('f_midi')

PIGPIO
We use the pigpio library to interface with the GPIO pins. We have found this library to be
more stable and flexible than the standard method of interfacing with the Pi’s hardware
(RPi.GPIO). If you want to use another library, edit the code accordingly.

To install the pigpio library, follow the instructions
here: http://abyz.me.uk/rpi/pigpio/download.html

Prior running all of the examples below, you should start the pigpio service if not done:

sudo pigpiod

Python Examples

The examples also use the numpy library’s interp function as an easy way to map between
two ranges. We used Reaper to send and receive data. The Pi is configured as a Hardware
MIDI output in Reaper’s preferences menu.

Control GPIO with Note Data (example_1_key_press.py)

This example shows how to:

• Listen for 3 specific note-on and note-off events using a simple condition

• Catch the exceptions that arise when non-note data is sent to the Pi (e.g.
transport data from a sequencer)

• Map the note velocity to the PWM of the output pin

Import the relevant libraries, create the pi object from the pigpio library, and open the
output port:

import mido

import pigpio

from numpy import interp

pi1 = pigpio.pi()

port = mido.open_input('f_midi') # open USB port

http://abyz.me.uk/rpi/pigpio/download.html

The try/catch block is to catch the errors that arise from other types of MIDI data being
sent (e.g. transport
controls etc.).

while True:

try: #This filters out all non-note data

for msg in port.iter_pending(): # if there is a message pending

if(msg.type == 'note_on'): # if it is Note On message

out = interp(msg.velocity, [0,127],[0,255]) #

scale velocity from 0-127 to 0-255

#filter the data by note number

if(msg.note == 53):

pi1.set_PWM_dutycycle(2, out)

elif(msg.note == 55):

pi1.set_PWM_dutycycle(3, out)

elif(msg.note == 57):

pi1.set_PWM_dutycycle(4, out)

else: # if the message is not Note On (e.g. Note Off)

if(msg.note == 53):

pi1.set_PWM_dutycycle(2, 0)

elif(msg.note == 55):

pi1.set_PWM_dutycycle(3, 0)

elif(msg.note == 57):

pi1.set_PWM_dutycycle(4, 0)

except AttributeError as error:

print("Error excepted")

pass

Control GPIO with Mod and Pitch Wheels (example_2_wheels.py)

This example shows how to:

• Listen for Pitch and Mod Data and filter them by type

• Map the data to the PWM of the output pin

This example is similar to the above, with these message types:

• The Pitch wheel is type pitchwheel with a value of msg.pitch

• The Mod Wheel is a Continuous Controller type control_change with a control
parameter of msg.control = 1 (the CC number) and a value of msg.value

import mido

import pigpio

from numpy import interp

pi1 = pigpio.pi()

port = mido.open_input('f_midi') # open USB port

while True:

try: #This filters out all non-note data

for msg in port.iter_pending(): #if there is a message pending

if msg.type == 'pitchwheel': #of type pitchwheel

print("PITCH: ", msg.pitch)

out = interp(msg.pitch, [-8192,8192],[0,255])

pi1.set_PWM_dutycycle(2, out)

pi1.set_PWM_dutycycle(3, out)

pi1.set_PWM_dutycycle(4, out)

if msg.type == 'control_change' and msg.control == 1:

print("MOD: ", msg.value)

except AttributeError as error:

print("Error excepted")

pass

Output MIDI Data from a GPIO Event (gpio_event.py)

This example shows how to:

• Use an interrupt to detect a button press

• Send MIDI data from the Pi to another device

Open the output port, create two messages and setup the GPIO pin as an input. This
example assumes there is a button tied to pin 21, so that pin goes HIGH when the button
is pressed:

import mido

import pigpio

pi1 = pigpio.pi()

outport = mido.open_output('f_midi') # open USB port

onmess = mido.Message('note_on', note = 34, velocity = 127)

offmess = mido.Message('note_off', note = 34, velocity = 127)

buttPin = 21

pi1.set_mode(buttPin, pigpio.INPUT)

The following are the callback functions called when the button is pressed or released. The
output ports send() function simply sends the message out of the port:

def buttonDown(gpio, level, tick):

print("DOWN")

outport.send(onmess)

def buttonUp(gpio, level, tick):

print("UP")

outport.send(offmess)

The callback listeners run in the background and do not need any more attention:

cb = pi1.callback(buttPin,pigpio.RISING_EDGE, buttonDown)

cb2 = pi1.callback(buttPin,pigpio.FALLING_EDGE, buttonUp)

#Just loop and do nothing

while True:

pass

Playback a MIDI File

This example shows how to:

• Load a MIDI file in the programming environment

• Playback the file

This examples assumes you have a MIDI file called midi_file.mid in the same directory as
your python script:

import mido

from mido import MidiFile

from mido import MetaMessage

port = mido.open_output('f_midi')

mid = MidiFile('midi_file.mid')

while True:

for msg in MidiFile('midi_file.mid').play():

port.send(msg)

