SX1262 868M LoRa HAT

Instruction

- This product is a Raspberry Pi expansion board based on SX1268/SX1262 chip, wireless serial port module with LoRa modulation function
- With multi-level relay to achieve ultra-long-distance communication, low power consumption wake-up communication, encrypted transmission, etc.
- This product uses a private protocol and does not support LoRaWAN

Features

- Standard Raspberry Pi 40PIN GPIO extension header, supports Raspberry Pi series boards
- Onboard CP2102 USB TO UART converter, for serial debugging
- Brings the UART control interface, for connecting host boards like Arduino/STM32
- 4x LED indicators, easy to check the module status
- LoRa spread spectrum modulation technology, up to 81 available signal channel, longer communication distance, more robust to interference
- Auto multi-level repeating, suit for ultra long range communication, allows multi network on the same region
- Low power consumption features like deep sleeping and Wake on Radio, ideal for battery-powered applications
- Customizable communication key which won't be retrieved, greatly improves the security of user data

- Supports LBT, monitoring the signal channel noise before transmitting, greatly improves the success ratio under extreme environment
- Supports RSSI signal intensity indicating, for evaluating signal quality, tuning the network
- Supports wireless parameter configuration, by sending wireless command/data packet, remotely configure or retrieve the module parameter
- Supports fixed-point transmission, broadcast, signal channel monitor
- Comes with development resources and manual (examples for Raspberry Pi/STM32)

Specification

	Specification of SX1268 433M LoRa HAT						
	Transmit Current	110mA (Transient current)					
Consumption	Receive Current	11mA					
	Sleep Current	2uA (LoRa module deep sleep)					
MAX Trans	mit Power	22.0dBm(10, 13, 17, 22dBm Selectable)					
Transmit	t Length	240 Bytes (32, 64, 128, 240 Bytes Selectable)					
Buf	fer	1000 Bytes					
Working	g bands	410.125 ~ 850.125MHz					
Receive S	ensitivity	147dBm@0.3Kbps (On air)					
Inter	face	UART					
Range		5KM(Sunny day; open area; Antenna: AUX 5dBi, Height 2.5m; Air Speed: 2.4kbps)					
Working voltage		5V					
Logic v	oltage	3.3V					
Working Temperature		40 ~ 85°C					

Hardware description

- 1. SX1268/SX1262 LoRa module
- 2. 74HC125V: voltage level translator
- 3. CP2102: USB TO UART converter
- 4. Raspberry Pi GPIO connector: for connecting with Raspberry Pi
- 5. USB TO UART port
- 6. UART header: for connecting host boards like STM32/Arduino
- 7. SMA antenna connector
- 8. IPEX antenna connector
- 9. Indicators:
 - RXD/TXD: UART RX/TX indicator
 - AUX: auxiliary indicator
 - PWR: power indicator
- 10. **UART** selection jumpers
 - A: control the LoRa module through USB TO UART

- B: control the LoRa module through Raspberry Pi
- C: access Raspberry Pi through USB TO UART
- 11. LoRa mode selection jumpers
 - short M0, short M1: transmission mode
 - short M0, open M1: configuration mode
 - open M0, short M1: WOR mode
 - open M0, open M1: deep sleep mode

[Note]

Mode 0: Transmission mode, Module transmit data when users send data to UART interface. Wireless receiving is enabled to receive data and send to UART interface when idle.

Mode 1:When it is defined to Transmit, user need to add wakeup codes before transmitting, receiving is same as Mode 0.

Mode 2: Wireless transmit and wireless receive are disabled, users can configure configuration according to #Registers Configuration

Mode 3: Wireless transmit and wireless receive are disabled, module enter deep sleep mode. Module will configure when switching to other modes.

Use Guides

Registers Configuration

If the module is set to configuration mode (Mode 2), you can configure registers according to table below. (Baud rate: 9600, 8N1)

Configure registers

	Answer format	0xC1 + Begin a			+ Data					
	Examp	les 1: Set chann	el to 0x11							
		Head	Begin address	Length	Data					
	Command	0xC0	0x05	0x01	0x11					
	Answer	0xC1	0x05	0x01	0x11					
	Examples 2: Set Module address (0x1234), NETID(0x00), UART(9600, 8N1), Air speed(1.2K)									
Configure registers		Head	Begin address	Length	Data					
	Command	0xC0	0x00	0x04	0x12 0x34 0x00 0x61					
	Answer	0xC1	0x00	0x04	0x12 0x34 0x00 0x61					
	Command format	0xC1 + Beg	in addres	s + Leng	gth					
	Answer format	0xC1 + Begin a	ddress +	Length	+ Data					
	Examples 1: Read channel									
		Head	Begin address	Length	Data					
	Command	0xC1	0x05	0x01						
Read registers	Answer	0xC1	0x05	0x01	0x12 0x34 0x00 0x61					
	Examples 2: Read N	Module address, air speed.	NETID, Se	erial por	t and					
		Head	Begin address	Length	Data					
	Command	0xC1	0x00	0x04						
	Answer	0xC1	0x00	0x04	0x12 0x34					

						0x00
			0.63			0x61
	Command		3		•	
	Answer fo		0xC1 + Begin a		Lenght	+ Data
		Examp	oles 1:Set channe			
			Head	Begin address	Length	Data
	Comma	and	0xC2	0x05	0x01	0x11
	Answ	er	0xC1	0x00	0x01	0x11
Configure	•		nodule address(0 rt(9600 8N1), Air			00),
temporary registers			Head	Begin address	Length	Data
	Comma	and	0xC2	0x00	0x04	0x12 0x34 0x00 0x61
	Answ	er	0xC1	0x00	0x04	0x12 0x34 0x00 0x61
	Command	format	0xCF 0xCF +	Commo	n comm	and
	Answer format		0xCD 0xCF + Co	mmon ar	nswer	
	Ex	amples 1	1: Wireless set ch	annel to	0x11	
	,	Wireless Head	Head(common)	Begin address	Length	Data
Wireless configuration	Command	0xCF 0xCF	0xC2	0x05	0x01	0x11
	Answer	0xCD 0xCF	0xC1	0x05	0x01	0x11
	-		ess set module (0 rt(9600 8N1), Air			(00),
	,	Wireless Head	Head (common)	Begin address	Length	Data

	Command	0xCF 0xCF	0xC2	0x00	0x04	0x12 0x34 0x00 0x61
	Answer	0xCD 0xCF	0xC1	0x00	0x04	0x12 0x34 0x00 0x61
Format error	Answer of Format error 0xFF 0xFF					

Description of registers

NO.	Read/Write	Name		Des	scription	Note	
00Н	R/W	ADDH		ADDH	l (Default:0	High bits and Low bits of module address. Note thant when module address is 0xFFFF.	
01H	R/W	ADDL		ADDL	. (Default:0)	It works as broadcasting and listening address and LoRa module doesn't filter address anymore	
02H	R/W	NETID		NETID	(Default: 0	Network ID, it is used to distinguish network. If you want to communicating between two modules, you need to set their NETID to same ID	
							The baud rates and
			0	0	0	Baud rate is 1200	parity of modules which are intercommunicating
0211	03H R/W REG0	DECO.	0	0	1	Baud rate is 2400	can be different.
ОЗП		REG0	0	1	0	Baud rate is 4800	Generally we recommend you to set
			0	1	1	Baud rate is 9600 (default)	their baud rate to same value to avoid data blocking or data losing
			1	0	0	Baud rate is 19200	

			1	0	1	Baud rate is 38400	
			1	1	0	Baud rate is 57600	
			1	1	1	Baud rate is 115200	
							The serial port of
			0	0	8N1 (C	Default)	modules which are
			0	1	80	D1	intercommunicating can set to different
			1	0	8	E1	paramters
			1	1	8N1 (sar	ne as 00)	
			0	0	0	Air speed is 0.3K	
			0	0	1	Air speed is 1.2K	The air speed of two modules which are
			0	1	0	Air speed is 2.4K (default)	intercommunicating must be same.
			0	1	1	Air speed is 4.8K (default)	Higher the speed, smaller the latency and shorter the
			1	0	0	Air speed is 9.6K	communicating distance.
			1	0	1	Air speed is 19.2K	
			1	1	0	Air speed is 38.4K	
			1	1	1	Air speed is 62.5K	
04H	R/W	REG1					If the size of data transmitted are shorter

0		240 bytes (default)	than the length of
0	1	128 bytes	divided packet. Data
1	0	64 bytes	are continuous sent to serial port after
1	1	32 bytes	receiving; If the size of data transmitted are longger than the length of divided packet. Data are divided and sent to serial port after receiving.
			After enabling, You can send command 0xC0
0	Dis	sable (default)	0xC1 0xC2 0xC3 to read register in Transmit
1		enable	Register 0x00: RSSI of current ambient noise Register 0x01: The RSSI of last communicating (current noise of channel is dBm = - RSSI/2); Command format: 0xC0 0xC1 0xC2 0xC3 + Begin address + Read length; Answer format: 0xC1 + Address + Read length + Data; For example: Command: 0xC0 0xC1 0xC2 0xC3 0x00 0x01 Answer: 0xC1 0x00 0x01 RSSI (The address

						should begin from 0x00)			
						The relationship between power and			
			0	0	22dBm (default)	current is non-linear.			
			0	1	17dBm				
			1	0	12dBm	If power is maximum, the power efficiency is			
			1	1	10dBm	highest. Current will not small in the same proportion of power.			
05H	R/W	REG2	C		ntrol (CH) 0-83. 84 nels in total	Actually frequency is 850.125 + CH *1MHz. Default 868.125MHz(SX1262),or 410.125 + CH *1MHz. Default 433.125MHz(SX1268)			
						After enabling, data			
			0	Dis	sable (default)	sent to serial port is added with a RSSI byte			
						1		Enable	after receiving
						When point to point transmitting, module			
06H	06H R/W	/W REG3	0	0 Transparent transmitting (default)		will recognize the first three byte as Address			
			1	Point to Point Transmitting		High + Address Low + Channel. and wireless transmit it			
						If target address is not module itself, module			
			0	Dis	sable (default)	will forward data;			
			1		Enable				

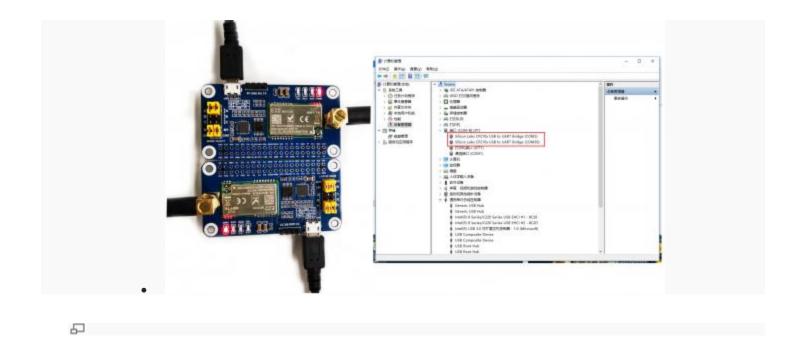
			To avoid data echo, we recommend you to use this function in point to point mode, that is target address is different with source address
			Module will listen before transmit wireless
	0	Disable(default)	data.
	1	Enable	This function can be used to avoid interference, however, it also clause longer latency; The MAX LBT time is 2s, after 2s, data is forced to transmit
			This setting only work for Mode 1;
	0	WOR transmit (default) Module is enabled to receive/transmit, and wakeup code is added to transmitted data.	Receiver waits for 1000ms after receive wirelesss data and forward,and then enter WOR mode again User can send data to
	1	WOR Sender Module is disable to send data. Module is working in WOR listen mode. Consumption is reduced	serial port and forward via wireless network during this interval, Every serial byte will refresh this interval time (1000ms); You much send the first byte in 1000ms.

							This setting only work for Mode 1;
			0	0	0	500ms	
			0	0	1	1000ms	Period is equal to T =
			0	1	0	1500ms	(1 + WOR) * 500ms; MAX 4000ms, MIN
			0	1	1	2000ms	500ms
			1	0	0	2500ms	Longer the Period time
			1	0	1	3000ms	of WOR listen, lower
			1	1	0	3500ms	the average
			1	1	1	4000ms	consumption, however, longer the latency The settings of receiver and sender must be same.
07H	W	CRYPT_H	ŀ	High bytes	of Key (def	ault 0)	Only write enable, the
08H	W	CRYPT_L		Low bytes o	of key (defa	read result always be 0; This key is used to encrypting to avoid wireless data intercepted by similar modules; This key is work as calculation factor when module is encrypting wireless data.	
80H ~ 86H	R	PID	ln [.]	formation c	of module (7 bytes data of module information	

[Note]

1. When wireless configuring, you need to firstly configure Modules address, NETID, Air speed and Key of both modules to same values. For example, if Modules A: Module address is 1, NETID is 1, Air speed is 2.4Kbps and Key is 1. Module B:

Module address is 2, NETID is 2, Air speed is 62.5Kbps and Key is 2. If you want to use Module A to configure Module B via wireless network, you need to set Module A to be same as Module B. Then you can use 0xCF 0xCF command to configure Module B via wireless network.


2. After configure temporary registers, LoRa modules work by settings of temporary registers. If LoRa modules restart, the settings of temporary are invalid, LoRa module will reconfigure registers according to network settings by 0xC1 commands.

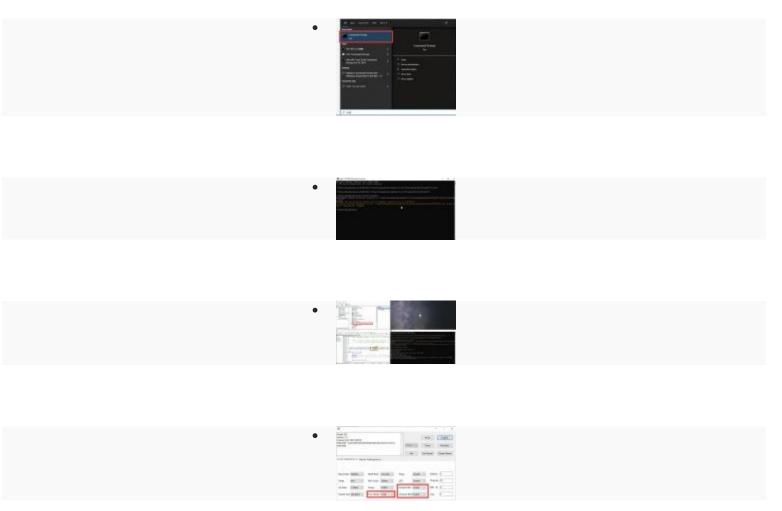

Registers Description

Using with PC

SSCOM connection test

- 1. To test, you need two SX1268 LoRa HAT (hereafter called LoRa HAT), two micro USB cables.
- 2. Connect SMA antennas to LoRa HATs. Set jumpers to A and set M0 and M1 to GND.
- 3. Connect USB to UART interfaces of two LoRa HATs to PC by micro USB cables
- 4. Check the COM ports on Devices Manager
- 5. Open SSCOM software, Set serial ports to 9600, 8N1 and try to send data.

minal


is test uses a Windows PC to connect to the LoRa HAT, and the jump ttings will not change according to the factory location 1. Install python3 Windows, then enter cmd in the launch bar to search and open the indows terminal

Enter the path of python3 into the terminal, the default address is enerally as shown in the figure below, pay attention to check the user's new python3 path, install pyserial

Use the upper computer software to set up LoRa HAT, unplug the M1 mper when setting, connect to the M1 jumper and close the serial port

the upper computer after the setting is completed, and set the rameters as follows

Unzip the sample program to the desktop, open the main.py file to odify the COM port, and then run

sing with Raspberry Pi

this chapter, the example demonstrates 1 use two LoRa HATs to connect two Raspberry Pis for receiving and sending tests, and the example monstrates 2 using 3 LoRa HATs for relay communication receiving and nding tests.

rdware connection, install library, enable Raspberry Pi serial port, download sample ogram

Hardware connection

To test the codes, you need to setup device with RaspberryPi board like below picture, set jumpers to B and remove M0, M1 jumpers Powering on Raspberry Pi

ter the following commands one by one to install the python library, the st command enables the Raspberry Pi serial port

```
oraspi-config

pocuments

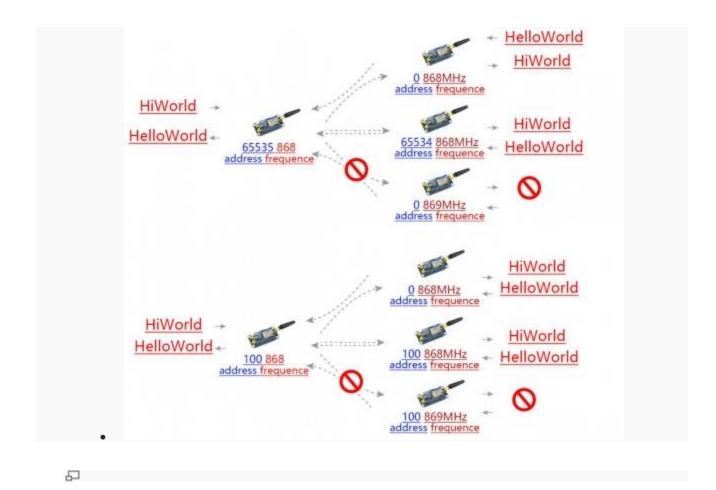
https://www.waveshare.com/w/upload/9/9d/SX126X_LoRa_HAT_Demo.zip

p SX126X_LoRa_HAT_Demo.zip
```

2. Enable serial port

Transparent example

Open Terminal of Raspberry Pi Run command **sudo raspi-config** to open Configure interface Choose Interfacing Options -> Serial -> No -> Yes After executing the following command, the node will automatically print to the terminal when it receives the data sent by other nodes. When the node needs to send data to other nodes, press the keyboard i, and then enter the input according to the prompt, as shown in the figure below:


```
cd
~/Documents/SX126X_LoRa_HAT_Code/raspberrypi/pyth
on/
sudo python3 main.py
```

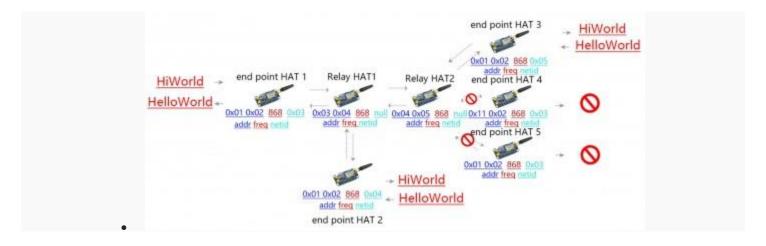
```
pi@spi4b:~/Documents/sx126x_lora $ sudo python3 main.py
Press Esc to exit
Press i to send
receive message from address 25 node
message is b'Hello'
the last receive packet rssi value: -59dBm
receive message from address 25 node
message is b'CPU Temperature:50.147'
the last receive packet rssi value: -60dBm
receive message from address 25 node
message is b'CPU Temperature:51.121'
the last receive packet rssi value: -60dBm
input a string such as 20,Hello World,it will send 'Hello World' to node of address 20
please input and press Enter key:25,Hello World
```

first node

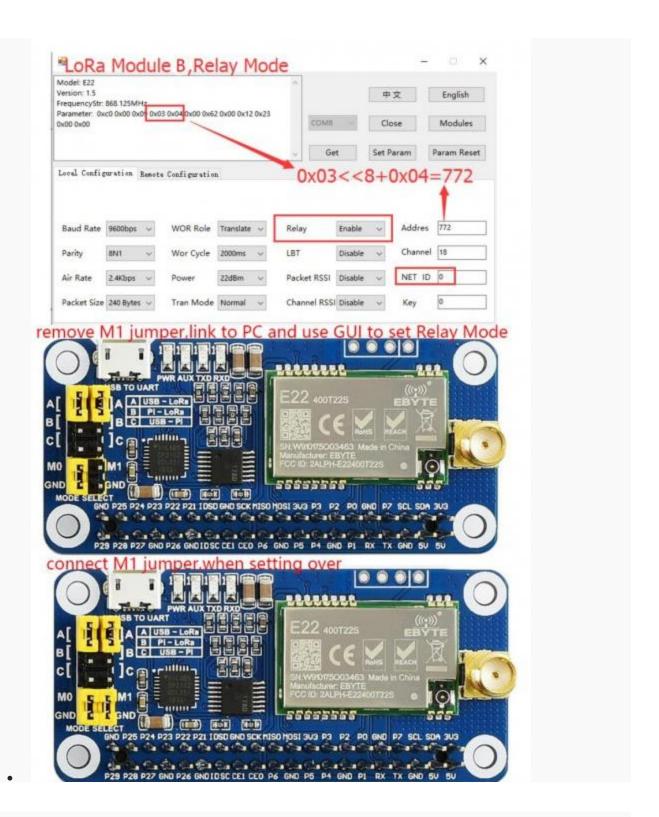
```
pi@raspberrypi:~/Documents/test $ sudo python3 main.py
Press Esc to exit
Press i to send
receive message from address 25 node
message is b'Hello World'
the last receive packet rssi value: -52dBm
```

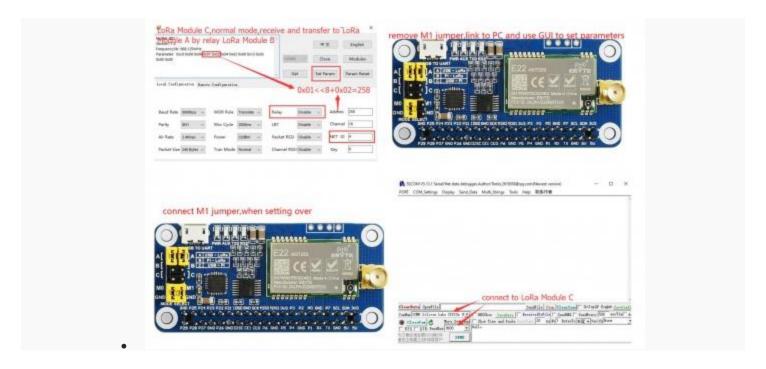
```
second node
```


transpareant transfer diagram


Relay example

After executing the following command, the node will automatically print to the terminal when it receives the data sent by other nodes. When the node needs to send data to other nodes, press the keyboard i, and then enter the input according to the prompt, as shown in the figure below:


[Note] To test Relay example, you require at least three LoRa HATs.


Suppose there is the three LoRa modules, LoRa module A, LoRa module B, and LoRa module C

Use the Windows PC to set the relay LoR module B and LoRa module C. LoRa module A is directly connected to the Raspberry Pi, as shown in the following figure

relay transfer diagram

5

lora module C setting

5

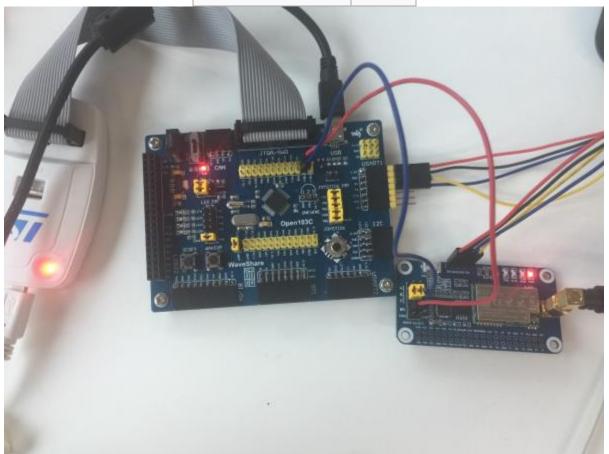
lora module A setting

After LoRa module A is connected to the Raspberry Pi, open the main.py file, change line 66, change realy=False to

realy=True, execute the following command, LoRa module C will print the data from the serial port after receiving the data, and relay the LoRa module B will not print any data from the serial port, enter the following command:

```
cd
~/Documents/SX126X_LoRa_HAT_Code/RaspberryPi/pyth
on/
# node = sx126x.sx126x(serial_num =
"/dev/ttyS0", freq=868, addr=0, power=22, rssi=True, a
ir_speed=2400, relay=True)
sudo python3 main.py
```

Using with STM32


The examples for STM32 are based on Open103C (STM32F103CBT6). Use HAL Lib.

1. Hardware connection

Set jumpers to B, and connect LoRa HAT to STM32 board pins by pins:

SX1268 LoRa HAT	STM32
5V	5V
GND	GND
RXD	PA10
TXD	PA9

M1	PB15
M0	PB14

2. Expected result

The connection of other LoRa HATs (if required) you can refer to the Raspberry Pi example parts.

Open the project, and modify the definition on main.c file for different communicating modes

```
#define TRASNSPARENT
//#define RELAY
//#define WOR
```

Resources

Documents

- SX1268 LoRa Schematic
- SX1268 Datasheet

Demo codes

• SX126X_LoRa_HAT_Code.zip

Softwares

- Panasonic SDFormatter
- Win32DiskImager
- putty
- SSCOM software
- RF Setting

If you require technical support, please go to the **Support** page and open a tickets.