Introduction

An expansion board with 8-ch relays for Raspberry Pi. It gives your Pi the ability to control high
voltage products such as home appliances.

INTERFACE
Channel RPI pin wiringPi BCM Description
CH1 29 P21 5 Channel 1
CH2 31 P22 6 Channel 2
CH3 33 P23 13 Channel 3
CH4 36 P27 16 Channel 4
CH5 35 P24 19 Channel 5
CH6 38 P28 20 Channel 6
CH7 40 P29 21 Channel 7
CH8 37 P25 26 Channel 8

[Note] The silk printing on PCB are BCM2835 codes



BCM2835 CODE

1. Files description
Execute command Is to list the files on demo code (downloaded from Waveshare

Wiki)

pi@raspberrypi:~/RPi Relay Board B/bcm2

Makefile Relay demo Relay demo.c

Makefile: You need to execute sudo make clean and then sudo make to
recompile code if you change codes.

Relay demo: Executable files

Relay demo.c: Sources code of this project.

Relay demo.o: Object files

2. Running code with command: sudo ./Relay demo

3. Expected result:
The relays will close one by one, and then open. Every relay has one indicator, you

can judge their states by the indicatos. Press Ctrl+C to stop process.



WIRINGPI CODE

1.

Files description

Execute command Is to list the files

pi@raspberrypi ~‘RPi4Re1ayuBoarde wiringPi $

Makefile Relay demo Relay demo.c
Makefile: You should execute command sudo make clean and then sudo make to
generate new executable file if you modify codes.
Relay demo: Executable files
Relay demo.c: Sources code of this project.

Relay demo.o: Object files

Running code with command: sudo ./Relay demo

Expected result:
The relays will close one by one, and then open. Every relay has one indicator, you

can judge their states by the indicatos. Press Ctrl+C to stop process.



PYTHON CODE

1. Files description

Execute command Is to list the files

pi@raspberrypi:~/RPi Relay Board B/python $

Relay demo.py

relay_demo.py: Sources code, includes all the control codes

2. Expected result:
The relays will close one by one, and then open. Every relay has one indicator, you

can judge their states by the indicatos. Press Ctrl+C to stop process.

PYTHON-BOTTLE CODE

1. python-bottle
Bottle is a lightweight, efficient micro Python Web framework. It is distributed as a
single file module and has no dependencies other than the Python Standard

Library.

2. Install python-bottle

sudo apt-get install python-bottle

3. Files description

Execute command Is to list files

pi@raspberrypi:~/RPi Relay Board B/python-bottle $ 1s

index.html jquery-3.3.1l.js main.py

index.html: HTML file, source code of web page



jquery-3.3.1,js: source file of jquery. jquery is a JavaScript library, it makes
JavaScript programming much simpler with many function modules which could

be directly called when using.

main.py: Source code of controlling. It receives data from web page and control 10

to control relays according to these data.

Running project: sudo python mian.py

Expected result:
Running code, and type IP address of Raspberry Pi to browser to open the web
page, port is 8080. Then you can open the web page which has control buttons for

8 relays as below, you can press these buttons to control relays.

webreay . AL

Controlling the Relay with the web Controlling the Relay with the web
Relay1
Relay2 Relay2
Relay3 Relay3
Relay4 Relay4
Relay5 Relay5
Relay6 Relay6
Relay7 Relay7
Relay8 Relay8




CRONTAB CODE

1. crontab
crontab are Unix command, used to create periodically executed crontab
commands. Such command will read command from standard input devices and

save to “crontab” file for further use.

2. Files description
Execute command Is to list the files

pi@raspberrypi:~/RPi Relay Board B/crontab $

main.py Relay status.txt

mian.py: source file which includes all control codes. Its main function is to read
last relay data from Relay_status.txt file, control replay according to the data and
then save current register data to Relay_status.txt

Relay status.txt: Files for saving status data of every relay

3. running code
Enter crontab directory, use pwd command to confirm the current path of
directory. Change parameter “dir" to current path on main.py. Don® t forget to
add Relay_status.txt at the end of path
Execute command sudo crontab -e to open crontab configure file. Append
statement to the end of file:
*f1* * * * sudo python /home/pi/RPi_Relay Board B/crontab/main.py

[Note] don® t forget to change the path to correct one.



save and exit
This statement is used to run the main.py every minutes

Execute command sudo fetc/init.d/cron restart to restart crontab service

4. Expected result:
After restarting, crontab service is go to effect, and module will open one relay
every minute, if all relays were opened, it turn to close one relay every minute,
keep looping.

If you want to stop crontab service, you just need to open crontab configure file

and comment the command (we added before) and restart crontab.

Libraries Installation for RPi

In order to use the APl examples we provide, related libraries are required, which should be
installed manually.

e bcm2835 libraries

e wiringPi libraries

Install WiringPi Library

Click to download the wiringPi libraries, or you can also obtain the latest version from the WiringPi
website:

https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install/

Copy the installation package into your own system via a USB flash drive, enter the WiringPi folder,
then do this to install:

chmod 777 build

./build



https://www.waveshare.com/wiki/File:Bcm2835-1.39.tar.gz
https://www.waveshare.com/wiki/File:WiringPi.tar.gz
https://www.waveshare.com/wiki/File:WiringPi.tar.gz
https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install/

Run the following command to check the installation:

gpio -v

Install C Library bcm2835

Click to download the bcm?2835-1.39 libraries or bcm2835-1.45 libraries. You can also obtain the
latest version from the bcm2835 website: http://www.airspayce.com/mikem/bcm2835/

Copy the installation package into your own system, enter the bcm2835 libraries folder, then do this
to install:

./configure
make
sudo make check

sudo make install

Install Python Library

Python Libraries for Raspbian (contain RPi.GPIO and spidev installation packages.
See: https://pypi.python.org/pypi/RPi.GPIO https://pypi.python.org/pypi/spidev ) get it by apt-get
commands.

Please take a note, your Raspberry Pi should be connected to the network when using the command
apt-get to install the library. Before the installation, you can run the following command to update
your software list.

sudo apt-get update

1. Run the following command to install the package python-dev

sudo apt-get install python-dev

2. Installing the RPi.GPIO package (GPIO interface functions). Copy the installation package
RPi.GPIO to your RPi board, and unzip it. Enter the unzipped file under the terminal, and run

the following command to install the library:

sudo python setup.py install

3. Run the following command to install the library smbus (12C interface functions)


https://www.waveshare.com/wiki/File:Bcm2835-1.39.tar.gz
https://www.waveshare.com/wiki/File:Bcm2835-1.45.tar.gz
http://www.airspayce.com/mikem/bcm2835/
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/spidev

sudo apt-get install python-smbus

4. Run the following command to install the library serial, which contains UART interface

functions

sudo apt-get install python-serial

5. Installing the library spidev (SPI functions). Copy the installation package spidev to your RPi

board, and unzip it. Enter the unzip file under the terminal, and run the following command

to install the library:

sudo python setup.py install

6. Run the following command to install the Python imaging library

sudo apt-get install python-imaging

Configuring the interfaces

(Before running the API codes we provided, you should start up the corresponding core drivers of
the interfaces. In the ready-to-use system image file, both 12C and SPI are set to Enable by default,

but the serial port is still in the terminal debugging function mode.)

1. Enable the 12C function. Run the following command to configure your Raspberry Pi board:

sudo raspi-config

Select Advanced Options -> 12C -> yes, to start up the 12C core driver. Then you also need to

modify the configuration file. Run the following command to open the configuration file:

sudo nano /etc/modules

Add the following two lines to the configuration file

i2c-bcm2708

i2c-dev



Press the keys Ctrl+X to exit, and input Y to save the settings. Then, reboot the module to

make the settings take effect.

2. Enable the serial function. The serial port of RPi is set to serial terminal debugging function
mode by default. If you want the serial port services as a common 10, you should modify the
settings on the RPi. When the terminal debugging function is disabled, you cannot access
RPi board via the serial port any more. If you want to control the RPi, you may need to

enable the debugging function of the serial port again.

sudo raspi-config

Select Advanced Options -> Serial. Select the option no can disable the serial debugging
function. And then, the serial port can be used for serial communication. And select the
option yes can enable the serial debugging function. You should reboot the module to make

the settings take effect.

Note: the serial port on Raspberry Pi 3 Model B is unusable, because Pin 14 and Pin 15

is connected to the on-board Bluetooth model.

1. Start up the spi function, run the following command:

sudo raspi-config

Select Advanced Options -> 12C -> yes, to start up 12C core driver.

File:RPi Relay Board (B) Schematic.pdf
RPi Relay Board (B) Schematic.pdf (0 x O pixels, file size: 520 KB, MIME type: application/pdf)

File:RPi Relay Board B.tar.gz

RPi Relay Board B.tar.gz (file size: 114 KB, MIME type: application/x-gzip)



https://www.waveshare.com/w/upload/d/db/RPi_Relay_Board_%28B%29_Schematic.pdf
https://www.waveshare.com/w/upload/2/27/RPi_Relay_Board_B.tar.gz

