
Overview 
• Sensor Chip: TCS3200 (RGB color detector) 

• Detects static color, the output is a square wave with frequency directly 

proportional to incident light intensity 

• Supports fill-light by onboard LEDs 

Specifications 
• Power: 2.7V ~ 5.5V 

• Ideal detection distance: 10mm 

• Dimension: 36.0mm * 20.6mm 

• Mounting holes size: 2.0mm 

Working principle 
TCS3200D contains four types of filters: red filter, green filter, blue filter, and clear with no 

filter. When the sensor is illuminated by a ray of light, the types of filters (blue, green, red, 

or clear) used by the device can be selected by two logic inputs, S2 and S3. Table 2 

illustrates the relationship among S2, S3, and filter types. 

S2 S3 Filter type 

L L Red 

L H Blue 

H L Clear (no filter) 

H H Green 

TCS3200D outputs a square wave (50% duty cycle) with a frequency corresponding to 

light intensity and color, and the frequency is directly proportional to light intensity. The 

typical output frequency of TCS3200D is in a range of 2Hz to 500KHz. Users can control 



frequency values of 100%, 20%, and 2% by two programmable outputs, S0 and S1, as 

Table 3 shown. 

S0 S1 Output Frequency Scaling 

L L Power down 

L H 2% 

H L 20% 

H H 100% 

TCS3200D has different sensitivities to red, green, and blue. As a result, the RGB output 

of pure white is not always 255. Therefore, a white balance adjustment is required after 

power-up within 2 seconds. Here are the processes. 

1. Place a white paper at the top of the sensor at a distance of 1cm, and input a 

High-level voltage to the LED port to light up 4 bright white LED indicators. 

2. The program selects R, G, and B filters respectively, and measures the 

corresponding RGB values of red, green, and blue. 

3. Calculate 3 adjustment parameters corresponding to red, green, and blue 

respectively, and perform automatic white balance adjustment. 

Applications 
This module can be applied to color sorting, environmental light induction and 

calibration, test strip reading, color matching test, etc. 

Pinouts 
In the case of working with an MCU: 

• VCC ↔ 2.7V ~ 5.5V 

• GND ↔ power supply ground 

• LED ↔ MCU.IO (controlling the 4 white LEDs) 



• OUT ↔ MCU.IO (RGB color output frequency) 

• S0/S1 ↔ MCU.IO (Output frequency scaling selection inputs) 

• S2/S3 ↔ MCU.IO (Photodiode type selection inputs) 

S0/S1 selects the output frequency scaling factor, S2/S3 selects the color filter of red, 

green, blue, then OUT outputs a square wave with a frequency proportional to the 

selected color intensity. The detected color can be determined by the ratio of the 

intensity of red, green, and blue. 

Note: 

• Avoids environment light noise 

• White balance is required when the first time using the module, reseting the 

module, or changing the light source. 

Get Started at Pico 
If you are the first time o use the Pico, you need to first learn how to get started at the 

Pico before you run other examples. 

The Pico supports C and the Micropython which requires different firmware. 

In most of the examples archives (Demo codes), we provide a Micropython firmware (uf2 

file), we recommend you to use the provided firmware to test the board. Because the 

codes may run abnormally with different firmware. 

If the board is tested to be workable, you can also download the newest firmware from 

Raspberry Pi and do further programming. 

• If you want to use C codes, please refer to the C/C++ Guides 

o Raspberry Pi Pico C/C++ SDK 

• If you want to use Micropython codes, please refer to the Micropython Guides. 

o Raspberry Pi Pico Python SDK 

• The link of the newest Micropython firmware of Pico 

o Micropython firmware of Raspberry Pi Pico 

• Official Guides of Raspberry Pi Pico 

o Document of Raspberry Pi Pico 

Hardware Connection 

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://micropython.org/download/rp2-pico/
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html#documentation


Sensor Pico Description 

VCC 3.3V Power input 

GMD GND Power ground 

S0 GP18 Combined with S1, select output frequency scaling 

S1 GP19 Combined with S2, select output frequency scaling 

S2 GP20 Combined with S3, select output frequency scaling 

S3 GP21 Combined with S2, select output frequency scaling 

OUT GP17 Read the output frequency of RGB 

LED GP16 Control the states of 4 LED indicators 

 

Download examples 
Use the Raspberry Pi as the host device. Open a terminal and run the following 

commands to download the example. 

sudo apt-get install p7zip-full 

cd ~ 

https://www.waveshare.com/wiki/File:Color-Pico_1.jpg


sudo wget  https://www.waveshare.com/w/upload/3/33/Color-Sensor-code.7z 

7z x Color-Sensor-code.7z -o./Color-Sensor-code 

Examples 

C codes 

• go into the c directory 

cd ~/Color-Sensor-code/Pico/c/build 

• Add the path of SDK 

export PICO_SDK_PATH=../../pico-sdk 

Note that if the path of your SDK is different, you need to modify the command and 

use the correct path to export 

• Generate Makefile and build 

cmake .. 

make -j9 

• After building, a uf2 file is generated 

• Press and hold the button of Pico, connect it to Raspberry Pi then release 

the button. 

• Copy/Drag the uf2 file to the portable disk (RPI-RP2) recognized 

cp main.uf2 /media/pi/RPI-RP2/ 

Micropython codes 

• Flash the Micropython firmware first 

• Open the Thonny IDE (Menu->Programming->Thonny Python IDE). 

• 【Optional】If the Thonny IDE in the Raspberry Pi is not the new version 

that supports Pico, please upgrade it first. 

sudo apt upgrade thonny 



• Configure Interpreter, choose Tools->Options... -> Interpreter, choose 

MicroPython(Raspberry Pi Pico) and the ttyACM0 port. 

 

• Click File -> Open.. and browser the micropython codes (Color 

Sensor.py) to run the codes 

Expected result 
• Place the white paper 1cm above the four bright white LEDs of the 

sensor 

• Power up the development board. At this time, the LED port is set to a 

high level, and the four bright white LEDs light up 

• Wait for more than 2 seconds after power-on (the white balance is being 

adjusted at this time) 

https://www.waveshare.com/wiki/File:Pico-lcd-0.96-img-config2.png


• After the adjustment, the sensor is facing the object to be measured, and 

the serial port outputs the corresponding RGB data. 

Notices 
• Light interference from outside should be avoided, which may affect the 

result of color identification. It is recommended to place the light source 

and Color Sensor in a close, light reflection-free box for testing. 

• White balance adjustment is required whenever the Color Sensor 

module is reset or the light source is changed. 

The STM32 examples are based on the STM32F103RBT6 and the STM32H743. 

The connection provided below is based on the STM32F103RB. If you need to 

use other STM32 boards, you may need to change the hardware connection 

and port the code yourself. 

Hardware connection 
Sensor STM32 Description 

VCC 3.3V Power input 

GMD GND Power ground 

S0 NC Combined with S1, select output frequency scaling 

S1 NC Combined with S2, select output frequency scaling 

S2 GPIOA.5 Combined with S3, select output frequency scaling 

S3 GPIOA.4 Combined with S2, select output frequency scaling 

OUT GPIOA.0 Read the output frequency of RGB 

LED 3.3V Control the states of 4 LED indicators 



 

Examples 
The examples are developed based on the HAL libraries. Download the 

Demo codes archive to your PC. Unzip and find the STM32 project from 

Color-Sensor-code\STM32\STM32F103RB\MDK-ARM. 

• Open the Color Sensor.uvprojx file by Keil 

• Build and the project 

• Program the project to your STM32 board. 

• Connect the UART1 of your STM32 board to the PC and check the 

serial data by SSCOM software. 

https://www.waveshare.com/wiki/File:Color-STM32_1.jpg


 

The Arduino example is written for the Arduino UNO. If you want to 

connect it to other Arduino boards, you may need to change the 

connection. 

Hardware connection 
Sensor Arduino Description 

VCC 5V Power input 

GMD GND Power ground 

S0 D6 Combined with S1, select output frequency scaling 

S1 D5 Combined with S2, select output frequency scaling 

S2 D4 Combined with S3, select output frequency scaling 

S3 D3 Combined with S2, select output frequency scaling 

OUT D2 Read the output frequency of RGB 

LED GP16 Control the states of 4 LED indicators 

https://www.waveshare.com/wiki/File:Color_STM32_3.png


 

Examples 
• Download the demo codes to your PC and unzip 

• Install the Arduino IDE in your PC 

• Go into Color-Sensor-code/Arduino/Color_Sensor 

• Run the Color_Senosr.ino file 

• Select the correct Board and the Port 

 

• Build the project and upload it to the board. 

• Open the serial monitor of the Arduino IDE or the SSCOM 

software and check the serial data. 

https://www.arduino.cc/en/Main/Software
https://www.waveshare.com/wiki/File:Color-Arduino_1.jpg
https://www.waveshare.com/wiki/File:MQ5_Arduino_1.jpg


 

Resources 
• Datasheets 

• User Manual 

• Schematic 

• Demo Code 

• Software 

 

https://www.waveshare.com/wiki/File:TCS3200.pdf
https://www.waveshare.com/wiki/File:Color-Sensor-UserManual.pdf
https://www.waveshare.com/wiki/File:Color-Sensor-Schematic.pdf
https://www.waveshare.com/w/upload/3/33/Color-Sensor-code.7z
https://www.waveshare.com/wiki/Color-Sensor_Software
https://www.waveshare.com/wiki/File:Color_Arduino_3.png

