Getting Started with NanoPi Duo2

- The NanoPi Duo2("Duo2") is an ARM board designed and developed by FriendlyELEC for makers and hobbyists. It is only 55 x 25.4mm. It features Allwinner quad-core A7 processor H3, and has 256M/512M DDR3 RAM, onboard WiFi & bluetooth module and an OV5640 camera interface. It works with Linux variants such as Ubuntu Core.
- The NanoPi Duo2 is tiny and compact with rich interfaces and ports. It takes power input from its MicroUSB port and can be booted from a Micro SD card. It works with general bread-boards. Interface pins such as USB, SPI, UART, I2C, PWM, IR, audio input & output and Fast Ethernet etc are populated.
- The NanoPi Duo2 supports software utilities such as WiringNP and Python etc. These are all open source. It is suited for various IoT applications.

2 Hardware Spec

- CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
- DDR3 RAM: 512M
- Connectivity: 10/100M Ethernet
- WiFi: 802.11b/g/n
- Bluetooth: Bluetooth V4.0 of 1, 2 and 3 Mbps.
- Camera: OV5640
- Key: GPIO Key
- USB Host: 2.54mm pin x2, exposed in 2.54mm pitch pin header
- MicroSD Slot x 1
- MicroUSB: OTG and power input
- Debug Serial Interface: exposed in 2.54mm pitch pin header
- Audio input/output Interface: exposed in 2.54mm pitch pin header
- GPIO1: 2.54mm spacing 16pin. It includes UART, SPI, I2C, Audio etc
- GPIO2: 2.54mm spacing 16pin. It includes USB,10/100M Ethernet, IO etc
- PCB Dimension: 25.4 x 55mm
- Power Supply: DC 5V/2A
- Temperature measuring range: -20°C to 70°C
- OS/Software: U-boot, Linux-4.14 / Linux-3.4, Ubuntu 16.04.2 LTS (Xenial)
- Weight: xxg(With Pin-headers)

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi Duo2 Layout

pinout

• GPIO Pin Spec

Pin#	GPIO1	Name	Linux gpio	Pin#	GPIO2	PIO2 Name	
1	5V	VDD_5V		2	RXD	DEBUG_RX(UART_RXD0)/GPIOA5/PWM0	5
3	5V	VDD_5V		4	TXD	DEBUG_TX(UART_TXD0)/GPIOA4	4
5	3V3	SYS_3.3V		6	GND	GND	
7	GND	GND		8	SCL	I2C0_SCL/GPIOA11	11

9	IRRX	GPIOL11/IR- RX	363	10	SDA	I2C0_SDA/GPIOA12	
11	PG11	GPIOG11	203	12	CS	UART3_TX/SPI1_CS/GPIOA13	13
13	DM3	USB-DM3		14	CLK	UART3_RX/SPI1_CLK/GPIOA14	14
15	DP3	USB-DP3		16	MISO	UART3_CTS/SPI1_MISO/GPIOA16	16
17	DM2	USB-DM2		18	MOSI	UART3_RTS/SPI1_MOSI/GPIOA15	15
19	DP2	USB-DP2		20	RX1	UART1_RX/GPIOG7	199
21	RD-	EPHY-RXN		22	TX1	UART1_TX/GPIOG6	198
23	RD+	EPHY-RXP		24	CVBS	CVBS	
25	TD-	EPHY-TXN		26	LL	LINEOUT_L	
27	TD+	EPHY-TXP		28	LR	LINEOUT_R	
29	LNK	EPHY-LED- LINK		30	MP	MIC_P	
31	SPD	EPHY-LED- SPD		32	MN	MIC_N	

• Camera (OV5640) Pin Spec

Pin#	Name
1	NC1
2	AGND

3	SIO-D
4	AVDD
5	SIO-C
6	RESER
7	VSYNC
8	PWDN
9	HREF
10	DVDD
11	DOVDD
12	Y9/MDP1
13	XCLK
14	Y8/MDN1
15	DGND
16	Y7/MCP
17	PCLK
18	Y6/MCN
19	Y2

20	Y5/MDP0
21	¥3
22	Y4/MDN0
23	AF-VDD
24	NC2

Note

- 1. SYS_3.3V: 3.3V power output
- 2. VDD_5V: 5V power input/output. When the external device's power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.5V.
- 3. All pins are 3.3V, output current is 5mA.
- 4. For more details refer to :<u>NanoPi Duo2 Schematic</u>

3.2 Dimensional Diagram

For more details refer to :<u>NanoPi_Duo2_V1.0_1807 pcb in dxf format</u>

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPi NEO get the following items ready

- NanoPi Duo2
- microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
- microUSB power. A 5V/2A power is a must

- A Host computer running Ubuntu 16.04 64 bit system
- A serial communication board

4.2 TF Cards We Tested

To make your NanoPi Duo2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

• SanDisk TF 8G Class10 Micro/SD TF card:

• SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

• 川宇 8G C10 High Speed class10 micro SD card:

4.3 Install OS

4.3.1 Get Image Files

Visit this link <u>download link</u> to download image files (under the official-ROMs directory) and the flashing utility(under the tools directory):

Image Files:

nanopi-duo2_sd_friendlycore- xenial_4.14_armhf_YYYYMMDD.img.zip	FriendlyCore (base on UbuntuCore) Image File, Kernel: Linux-4.14		
nanopi-duo2_sd_friendlywrt_4.14_armhf_YYYYMMDD.img.zip	Base on OpenWrt, kernel:Linux-4.14		
Flash Utility:			
win32diskimager.rar	Windows utility for flashing Debian image. Under Linux users can use "dd"		

4.4 Work with NanoPi Duo2 IoT-Box Carrier Board

FriendlyELEC developed a dedicated carrier board: NanoPi Duo2 IoT-Box. For more details about this carrier board refer to: Introduction to NanoPi Duo2 IoT-Box. How is a hardware setup:

5 Work with FriendlyCore

5.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:

- it integrates Qt4.8;
- it integrates NetworkManager;
- it has bluez and Bluetooth related packages;
- it has alsa packages;
- it has npi-config;
- it has RPiGPIO, a Python GPIO module;
- it has some Python/C demo in /root/ directory;
- it enables 512M-swap partition;

5.2 System Login

- If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
- If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

You can use a USB to Serial conversion board too. Make sure you use a 51//24 power to power your board from its MicroUSB port:

FriendlyCore User Accounts:

Non-root User:

User Name: pi Password: pi

Root:

```
User Name: root
Password: fa
```

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

Update packages

```
$ sudo apt-get update
```

5.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch, Auto login and etc. Type the following command to run this utility.

```
$ sudo npi-config
```


5.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

5.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

5.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

\$ **df** -h

5.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.

hcitool scan

Search results look like :

Scanning ... 2C:8A:72:1D:46:02 HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone :

```
sdptool browser 2C:8A:72:1D:46:02
```

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.

This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows :

```
Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
"OBEX Object Push" (0x1105)
Protocol Descriptor List:
```

```
"L2CAP" (0x0100)

"RFCOMM" (0x0003)

Channel: 12

"OBEX" (0x0008)

Profile Descriptor List:

"OBEX Object Push" (0x1105)

Version: 0x0100
```

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows :

```
obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02
-B 12 -put example.jpg
```

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ :

1) Bluetooth device not found on the development board, try to open Bluetooth with the following command :

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command :

apt-get install bluetooth bluez obexftp openobex-apps python-gobject
ussp-push

5.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index	Model
1	RTL8188CUS/8188EU 802.11n WLAN Adapter
2	RT2070 Wireless Adapter
3	RT2870/RT3070 Wireless Adapter
4	RTL8192CU Wireless Adapter
5	mi WiFi mt7601

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

Change to root

\$ **su** root

Check device list

\$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

Start WiFi

```
$ nmcli r wifi on
```

- Scan Surrounding WiFi Sources
- \$ nmcli dev wifi
 - Connect to a WiFi Source

\$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password. If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface

If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: <u>Use NetworkManager to</u> <u>configure network settings</u>

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from <u>Debian-WiFi</u> and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

\$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.

5.9 Setup Wi-Fi Hotspot

Run the following command to enter AP mode:

```
$ su root
```

\$ turn-wifi-into-apmode yes

You will be prompted to type your WiFi hotspot's name and password and then proceed with default prompts.

After this is done you will be able to find this hotspot in a neadby cell phone or PC. You can login to this board at 192.168.8.1:

\$ **ssh** root@192.168.8.1

When asked to type a password you can type "fa".

To speed up your ssh login you can turn off your wifi by running the following command:

\$ iwconfig wlan0 power off

To switch back to Station mode run the following command:

```
$ turn-wifi-into-apmode no
```

5.10 Bluetooth

Search for surrounding bluetooth devices by running the following command:

```
$ <mark>su</mark> root
```

```
$ hciconfig hci0 up
```

\$ hcitool scan

You can run "hciconfig" to check bluetooth's status.

5.11 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings.

5.12 WiringPi and Python Wrapper

- WiringNP: NanoPi NEO/NEO2/Air GPIO Programming with C
- RPi.GPIO : NanoPi NEO/NEO2/Air GPIO Programming with Python

5.13 Custom welcome message

The welcome message is printed from the script in this directory :

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/updatemotd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line :

TERM=linux toilet -f standard -F metal \$BOARD VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

5.14 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

• After your board is booted run the following commands to install alsa packages:

```
$ apt-get update
```

\$ apt-get install libasound2

```
$ apt-get install alsa-base
```

```
$ apt-get install alsa-utils
```

• After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:

\$ aplay -1

card 0: HDMI card 1: 3.5mm codec card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

```
pcm.!default {
    type hw
    card 0
    device 0
}
ctl.!default {
    type hw
    card 0
}
```

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device. Copy a .wav file to your board and test it by running the following command:

```
$ aplay /root/Music/test.wav
```

You will hear sounds from system's default audio device. If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using <u>npi-config</u>.

5.15 Connect to DVP Camera OV5640

For NanoPi-Duo2 the OV5640 can work with Linux-4.14 Kernel. The NanoPi-Duo2 has support for OV5640 cameras and you can directly connect an OV5640 camera to the board. Here is a hardware setup:

connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

- \$ cd /root/C/mjpg-streamer
- \$ make
- \$./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

```
$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
    Driver name : sun6i-video
    Card type : sun6i-csi
    Bus info : platform:camera
    Driver version: 4.14.0
...
```

The above messages indicate that "/dev/video0" is camera's device node. The mjpgstreamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

```
$ ./start.sh
```

- i: Using V4L2 device.: /dev/video0
- i: Desired Resolution: 1280 x 720
- i: Frames Per Second.: 30
- i: Format..... YUV
- i: JPEG Quality..... 90
- o: www-folder-path...: ./www/
- o: HTTP TCP port....: 8080
- o: username:password.: disabled
- o: commands....: enabled

start.sh runs the following two commands:

```
export LD LIBRARY PATH="$(pwd)"
```

```
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720
-f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"
```

Here are some details for mjpg_streamer's major options:

-i: input device. For example "input_uvc.so" means it takes input from a camera;

-o: output device. For example "output_http.so" means the it transmits data via http;

-d: input device's subparameter. It defines a camera's device node;

-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;

-r: input device's subparameter. It defines a camera's resolution;

-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;

-q: input device's subparameter. It defines the quality of an image generated by libjpeg softencoding;

-n: input device's subparameter. It disables the dynctrls function;

-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";

-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:

The mjpg-streamer utility uses libjpeg to software-encode steam data. The Linux-4.14 based ROM currently doesn't support hardware-encoding. If you use a H3 boards with Linux-3.4 based ROM you can use the ffmpeg utility to hardware-encode stream data and this can greatly release CPU's resources and speed up encoding:

```
$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i
/dev/video0 -pix_fmt nv12 -r 30 \
        -b:v 64k -c:v cedrus264 test.mp4
```

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.

5.16 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. Connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

```
$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh
```

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

```
$ apt-get install v4l-utils
$ v412-ctl -d /dev/video0 -D
Driver Info (not using libv412):
        Driver name : uvcvideo
        Card type : HC 3358+2100: HC 3358+2100 / USB 2.0
Camera: USB 2.0 Camera
```

The above messages indicate that "/dev/video0" is camera's device node. The mjpgstreamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

```
$ ./start.sh
i: Using V4L2 device.: /dev/video0
i: Desired Resolution: 1280 x 720
i: Frames Per Second.: 30
i: Format...... YUV
i: JPEG Quality.....: 90
o: www-folder-path...: /www/
o: HTTP TCP port.....: 8080
o: username:password.: disabled
o: commands...... enabled
```

start.sh runs the following two commands:

```
export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720
-f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"
```

Here are some details for mjpg_streamer's major options:

-i: input device. For example "input uvc.so" means it takes input from a camera;

-o: output device. For example "output http.so" means the it transmits data via http;

-d: input device's subparameter. It defines a camera's device node;

-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;

-r: input device's subparameter. It defines a camera's resolution;

-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;

-q: input device's subparameter. It defines the quality of an image generated by libjpeg softencoding;

-n: input device's subparameter. It disables the dynctrls function;

-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";

-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you

5.17 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 624MHz. Set CPU frequency:

```
CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz
```

5.18 Test Infrared Receiver

Note: Please Check your board if IR receiver exist. By default the infrared function is disabled you can enable it by using the npi-config utility:

```
$ npi-config
6 Advanced Options Configure advanced settings
A8 IR Enable/Disable IR
ir Enable/Disable ir[enabled]
```

Reboot your system and test its infrared function by running the following commands:

```
$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd
+xmp" > /sys/class/rc/rc0/protocols  # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.
```

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

```
1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).
```

5.19 How to install and use docker (for armhf system)

5.19.1 How to Install Docker

Run the following commands :

```
sudo apt-get update
sudo apt-get install docker.io
```

5.19.2 Test Docker installation

Test that your installation works by running the simple docker image:

```
git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh
```

5.20 Using 4G Module EC20 on FriendlyCore

5.20.1 Step1 : Compile the quectel-CM command line tool on the development board

Compile and install quectel-CM into the /usr/bin/ directory by entering the following command :

```
git clone https://github.com/friendlyarm/quectel-cm.git
cd quectel-cm/
make
cp quectel-CM /usr/bin/
```

5.20.2 Step2 : Add udhcpc script

The quectel-CM tool will call the udhcpc script. we need to create a udhcpc script for it. Please create a new file with the editor you are familiar with. The file name is: /usr/share/udhcpc/default.script, the content is as follows :

```
#!/bin/sh
# udhcpc script edited by Tim Riker <Tim@Rikers.org>
[ -z "$1" ] && echo "Error: should be called from udhcpc" && exit 1
RESOLV CONF="/etc/resolv.conf"
[ -n "$broadcast" ] && BROADCAST="broadcast $broadcast"
[ -n "$subnet" ] && NETMASK="netmask $subnet"
case "$1" in
  deconfig)
    /sbin/ifconfig $interface 0.0.0.0
    ;;
  renew | bound)
    /sbin/ifconfig $interface $ip $BROADCAST $NETMASK
    if [ -n "$router" ] ; then
      echo "deleting routers"
      while route del default gw 0.0.0.0 dev $interface ; do
        :
      done
      for i in $router ; do
        route add default gw $i dev $interface
      done
    fi
    echo -n > $RESOLV CONF
    [ -n "$domain" ] && echo search $domain >> $RESOLV CONF
    for i in $dns ; do
      echo adding dns $i
      echo nameserver $i >> $RESOLV CONF
    done
    ;;
esac
```

exit 0

Assign executable permissions with the following command :

chmod 755 /usr/share/udhcpc/default.script

5.20.3 Step3 : Start 4G dialing

Start the dialing by entering the following command:

```
quectel-CM &
```

If the dialing is successful, the screen will output information such as the IP address, as shown below:

```
root@NanoPC-T4:~# quectel-CM &
[1] 5364
root@NanoPC-T4:~# [05-15 08:23:13:719]
WCDMA&LTE QConnectManager Linux&Android V1.1.34
[05-15 08:23:13:720] quectel-CM profile[1] =
(null)/(null)/0, pincode = (null)
[05-15 08:23:13:721] Find /sys/bus/usb/devices/3-1 idVendor=2c7c
idProduct=0125
[05-15 08:23:13:722] Find /sys/bus/usb/devices/3-1:1.4/net/wwan0
[05-15 08:23:13:722] Find usbnet adapter = wwan0
[05-15 08:23:13:723] Find /sys/bus/usb/devices/3-1:1.4/usbmisc/cdc-
wdm0
[05-15 08:23:13:723] Find qmichannel = /dev/cdc-wdm0
[05-15 08:23:13:739] cdc wdm fd = 7
[05-15 08:23:13:819] Get clientWDS = 18
[05-15 08:23:13:851] Get clientDMS = 2
[05-15 08:23:13:884] Get clientNAS = 2
[05-15 08:23:13:915] Get clientUIM = 1
[05-15 08:23:13:947] Get clientWDA = 1
[05-15 08:23:13:979] requestBaseBandVersion
EC20CEFHLGR06A01M1G OCPU BETA1210
[05-15 08:23:14:043] requestSetEthMode QMUXResult = 0x1, QMUXError
= 0 \times 46
[05-15 08:23:14:075] requestGetSIMStatus SIMStatus: SIM_READY
[05-15 08:23:14:107] requestGetProfile[1] cmnet///0
[05-15 08:23:14:139] requestRegistrationState2 MCC: 460, MNC: 0,
PS: Attached, DataCap: LTE
[05-15 08:23:14:171] requestQueryDataCall IPv4ConnectionStatus:
DISCONNECTED
[05-15 08:23:14:235] requestRegistrationState2 MCC: 460, MNC: 0,
PS: Attached, DataCap: LTE
[05-15 08:23:14:938] requestSetupDataCall WdsConnectionIPv4Handle:
0xe16e4540
[05-15 08:23:15:002] requestQueryDataCall IPv4ConnectionStatus:
CONNECTED
[05-15 08:23:15:036] ifconfig wwan0 up
[05-15 08:23:15:052] busybox udhcpc -f -n -q -t 5 -i wwan0
[05-15 08:23:15:062] udhcpc (v1.23.2) started
[05-15 08:23:15:077] Sending discover...
[05-15 08:23:15:093] Sending select for 10.22.195.252...
[05-15 08:23:15:105] Lease of 10.22.195.252 obtained, lease time
7200
[05-15 08:23:15:118] deleting routers
SIOCDELRT: No such process
[05-15 08:23:15:132] adding dns 221.179.38.7
[05-15 08:23:15:132] adding dns 120.196.165.7
```

5.20.4 Test 4G connection

Ping a domain name to see if DNS resolution is already working :

```
root@NanoPC-T4:~# ping www.baidu.com
PING www.a.shifen.com (183.232.231.174) 56(84) bytes of data.
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=1 ttl=56
time=74.3 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=2 ttl=56
time=30.8 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=4 ttl=56
time=29.1 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=5 ttl=56
time=29.1 ms
```

5.20.5 Test the speed of 4G

```
wget -0 - https://raw.githubusercontent.com/sivel/speedtest-
cli/master/speedtest.py | python
```

The test results obtained are as follows :

```
Retrieving speedtest.net configuration...

Testing from China Mobile Guangdong (117.136.40.167)...

Retrieving speedtest.net server list...

Selecting best server based on ping...

Hosted by ChinaTelecom-GZ (Guangzhou) [2.51 km]: 62.726 ms

Testing download

speed.....

Download: 32.93 Mbit/s

Testing upload

speed.....

Upload: 5.58 Mbit/s
```

6 Work with OpenWrt

6.1 Introduction

OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:<u>OpenWrt Website</u>.

6.2 System Login

Login via Serial Port

When you do kernel development you'd better get a serial communication board. After you connect your board to a serial communication board you will be able to do development work from a commandline utility.

or you can use a USB to serial board and power on the whole system at the MicroUSB port with a 5V/2A power:

By default you will login as root without a password. You can use "passwd" to set a password for root.

BusyBox v1.28.3 () built-in shell (ash)								
OpenWrt 18.06.1, r7258-5eb055306f								
=== WARNING! ====================================								
root@0penWrt:/# On first boot the system will automatically extend the file system on the TF card to the max capacity:								
Begin: Resizing ext4 file system on /dev/mmcblk0p3 Model: SD SR64G (sd/mmc) Disk /dev/mmcblk0: 100% Sector size (logical/physical): 512B/512B Partition Table: msdos Disk Flags:								
Number Start End Size Type Filesystem Flags 1 0.04% 0.11% 0.07% primary fat16 2 0.11% 0.53% 0.42% primary ext4 3 0.53% 100% 99.5% primary ext4								
resize2fs 1.44.1 (24-Mar-2018) [29.750417] random: crng init done								

Resizing the filesystem on /dev/mmcblk0p3 to 62040064 (1k) blocks. The filesystem on /dev/mmcblk0p3 is now 62040064 (1k) blocks long.

Please wait for this to be done.

Login via SSH

By default in FriendlyElec's OpenWrt system the WiFi AP hotspot's name is like "OpenWrt-10:d0:7a:de:3d:92" and the network segment is 192.168.2.x. You can connect your device to it and login with SSH without a password by running the following command:

```
$ ssh root@192.168.2.1
```

You can login without a password.

Login via Web

You can login OpenWrt via a LuCI Web page. After you go through all the steps in <Login via SSH> and get an IP address e.g. 192.168.2.1 for the Ethernet connection, type this IP address in a browser's address bar and you will be able to login OpenWrt-LuCI:

By default you will login as root without a password, just click on "Login" to login.

6.3 Manage Software Packages

OpenWrt has a package management utility: opkg. You can get its details by running the following command:

```
$ opkq
Package Manipulation:
        update
                                Update list of available packages
        upgrade <pkgs>
                                Upgrade packages
        install <pkgs>
                                Install package(s)
        configure <pkgs>
                                Configure unpacked package(s)
        remove <pkgs|regexp>
                                Remove package(s)
        flag <flag> <pkgs>
                                Flag package(s)
         <flag>=hold|noprune|user|ok|installed|unpacked (one per
invocation)
Informational Commands:
                                List available packages
        list
        list-installed
                                List installed packages
        list-upgradable
                                List installed and upgradable
packages
        list-changed-conffiles List user modified configuration
files
                                List files belonging to <pkg>
        files <pkg>
        search <file|regexp>
                                List package providing <file>
```

```
find <regexp> List packages whose name or
description matches <regexp>
info [pkg|regexp] Display all info for <pkg>
status [pkg|regexp] Display all status for <pkg>
download <pkg> Download <pkg> to current directory
```

• • •

These are just part of the manual. Here are some popular opkg commands.

Update Package List

Before you install a package you'd better update the package list:

```
$ opkg update
```

Check Available Packages

```
$ opkg list
```

At the time of writing there are 3241 packages available.

Check Installed Packages:

```
$ opkg list-installed
```

At the time of writing 124 packages have been installed.

Install/Delete Packages:

```
$ opkg install <pkgs>
$ opkg remove <pkgs>
```

Check Files Contained in Installed Packages:

```
$ opkg files <pkg>
```

Install Chinese Language Package for LuCl
 \$ opkg install luci-i18n-base-zh-cn

Check Changed Files:

\$ opkg list-changed-conffiles

Reference Links:

openwrt opkg

6.4 Check System Status

Check CPU Temperature & Frequency via Commandline

These messages mean that there are four CPU cores working online simultaneously. Each core's temperature is 26.5 degrees in Celsius, the scheduling policy is on-demand and the

working frequency is 624MHz. You can set the frequency by running the following command:

These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz.

Check System Status on OpenWrt-LuCI Web Page

After open the OpenWrt-LuCI page, go to "Statistics ---> Graphs" and you will see various system statistics e.g.:

2) RAM:

All the statistics listed on the Statistics page are presented by the luci-app-statistics package which uses the Collectd utility to collect data and presents them with the RRDtool utility.

If you want to get more statistics you can install other collectd-mod-* packages. All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.

- Reference Links:
 - <u>openwrt luci_app_statistics</u>
 - openwrt statistics.chart.public
 - openwrt statistic.custom

6.5 Check Network->Interfaces Configurations

• After open the OpenWrt-LuCl page, go to "Network" ---> "Interfaces" and you will see the current network's configurations:

OpenWrt Status - Sys	stem - Network - Logout		AUTO REFRESH O
No password set! There is no password set on thi	s router. Please configure a root password to	protect the web interface and enable SSH.	
WAN LAN			
Interfaces			
LAN () br-lan	Protocol: Static address Uptime: 0h 24m 12s MAC: 0A:EB:0A:8D:55:C8 RX: 0 B (0 Pkts.) TX: 2.16 KB (14 Pkts.) IPv4: 192.168.2.1/24 IPv6: fdf0:45a0:1964::1/60	Restart Stop Edit	Delete
WAN eth0	Protocol: DHCP client Uptime: 0h 20m 52s MAC: 02:81:9A:D4:8A:08 RX: 525.60 KB (4022 Pkts.) TX: 799.08 KB (2727 Pkts.) IPv4: 192.168.1.136/24	Restart Stop Edit	Delete
Add new interface	5		
IPv6 ULA-Prefix	fdf0:45a0:1964::/48		
		Save & Apply	Save

• All the configurations listed on the Network->Interfaces page are stored in the "/etc/config/network" file.

6.6 Check Netwrok->Wireless Configurations

• After open the OpenWrt-LuCI page, go to Network ---> Wireless and you will see the WiFi hotspot's configurations:

OpenWrt	Status -	System -	Network -	Statistics -	Logout				AUTO REFRESH ON	
No passwo There is no pa	ord set!	on this router	. Please config	jure a root pas	sword to prot	ect the web interfac	e and enable S	SSH. Go to passw	ord configuration	
radio0: Master	r "OpenWrt-o	c:b8:a8:b6:5	9:7c"							
Wireless	Wireless Overview									
👳 radio0	Gen Chan	eric MAC8 mel: 1 (2.412	0211 802.1 GHz) Bitrat	1bgn e: 54 Mbit/s			Restar	t Scan	Add	
100%	SSID BSSI	: OpenWrt-co D: CC:B8:A8	::b8:a8:b6:59:1 :B6:59:7C Er	7c Mode: Ma ncryption: Not	ster ne		Disable	e Edit	Remove	
Associated Stations										
Network				MAC-Add	dress	Host	\$	Signal / Noise	RX Rate / TX Rate	
Master "O	penWrt-cc:b	8:a8:b6:59:70	c" (wlan0)	00:26:F2:	B1:57:46	wwd.lan (192.168	3.2.224)	🚛 -35 / 0 dBm	54.0 Mbit/s, 20MHz 54.0 Mbit/s, 20MHz	

A default WiFi AP's hotspot name looks like "OpenWrt-10:d0:7a:de:3d:92". It doesn't have a password. You can connect your smart phone to it and browse the internet.

• All the configurations listed on the Network->Wireless page are stored in the "/etc/config/wireless" file.

6.7 USB WiFi

Currently the NanoPi NEO2 Black only works with a RTL8821CU USB WiFi dongle, plug and play. After this module is connected to the board it will by default work under AP mode and the hotspot's name is "rtl8821cu-mac address" and the password is "password";

6.8 Huawei's WiFi 2 mini(E8372H-155) Module

After this module is connected to the board it will be plug and play. The hotspot's name is "HUAWEI-8DA5". You can connect a device to the internet by connecting to this hotspot.

7 Make Your Own Linux System

7.1 Make Image Based on Linux-4.14 BSP

The NanoPi Duo2 supports the Linux-4.14 kernel which is mainly maintained and supported by open source communities. FriendlyElec ported this kernel to the NanoPi Duo2.

Here is a reference link to more details about how to make image files for Allwinner H3 based on mainline U-boot and Linux-4.14 kernel:<u>Building U-boot and Linux for H5/H3/H2+</u>

7.2 Make Image Based on Linux-3.4 BSP

The Linux3.4 BSP is provided by Allwinner. FriendlyElec ported this to the NanoPi Duo2.

7.2.1 Preparations

Get lichee source:

```
$ git clone https://github.com/friendlyarm/h3_lichee.git lichee --
depth 1
```

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

7.2.2 Install Cross Compiler

Visit this site <u>download link</u>, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.

7.2.3 Compile lichee Source Code

Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux. The following cases were tested on Ubuntu-14.04 LTS-64bit:

```
$ sudo apt-get install gawk git gnupg flex bison gperf build-
essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libg11-mesa-glx:i386 \
libg11-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxm12-utils xs1tproc zlib1g-dev:i386
```

Enter the lichee directory and run the following command to compile the whole package:

```
$ cd lichee/fa tools
```

\$./build.sh -b nanopi-m1-plus -p linux -t all

After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated

Note: the lichee directory contains a cross-compiler we have setup. When you compile the source code it will automatically call this cross-compiler.

7.2.4 Compile U-boot

Note:you need to compile the whole lichee directory before you can compile U-boot individually.

You can run the following commands to compile U-boot:

```
$ cd lichee/fa_tools/
```

```
$ ./build.sh -b nanopi-m1-plus -p linux -t u-boot
```

The gen_script.sh script patches the U-boot with Allwinner features. A U-boot without these features cannot work.

Type the following command to update the U-boot on the MicroSD card:

```
$ cd lichee/fa_tools/
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
```

Note: you need to replace "/dev/sdx" with the device name in your system.

7.2.5 Compile Linux Kernel

Note:you need to compile the whole lichee directory before you can compile Linux kernel individually.

If you want to compile the Linux kernel run the following command:

```
$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t kernel
```

After the compilation is done a boot.img and its kernel modules will be generated under "linux-3.4/output".

7.2.6 Clean Source Code

```
$ cd lichee/fa_tools/
```

```
$ ./build.sh -b nanopi-m1-plus -p linux -t clean
```

8 Developer's Guide

- System Development
 - Building U-boot and Linux for H5/H3/H2+
 - How to Build FriendlyWrt
 - <u>Qt dev: How to Build, Install and Setting Qt Application</u>
- Image Utilities
 - How to make your own SD-bootable ROM
 - How to use overlayfs on Linux
 - EFlasher
- System Configurations
 - <u>npi-config</u>
 - Use NetworkManager to configure network settings
- Hardware Access
 - WiringNP: NanoPi NEO/NEO2/Air GPIO Programming with C
 - <u>RPi.GPIO : NanoPi NEO/NEO2/Air GPIO Programming with</u>
 <u>Python</u>
 - Hardware Misc
 - <u>Matrix</u>
 - BakeBit

HATs&Docks

9 Resources

9.1 Datasheets & Schematics

- Schematic: <u>NanoPi Duo2 V1.0 1807 Schematic</u>
- Dimensional Diagram: <u>NanoPi Duo2 V1.0 1807 PCB Dimensional Diagram</u>
- H3's datasheet <u>Allwinner_H3_Datasheet_V1.2.pdf</u>

10 Hardware Update Versions

10.1 V1.0 1807

First Version

11 Update Log

11.1 Oct-10-2018

Released English Version

11.2 Dec-19-2018

• Updated Section 6