
Get started with the M.2 or Mini PCIe Accelerator
To get started with either the Mini PCIe or M.2 Accelerator, all you need to do is connect the card to your
system, and then install our PCIe driver, Edge TPU runtime, and the TensorFlow Lite runtime. This page walks
you through the setup and shows you how to run an example model.

The setup and operation is the same for both Mini PCIe and M.2 form-factors, including the M.2 Accelerator
with Dual Edge TPU.

Requirements

• A computer with one of the following operating systems:

• Linux: 64-bit version of Debian 10 or Ubuntu 16.04 (or newer), and an x86-64 or
ARMv8 system architecture

• Windows: 64-bit version of Windows 10, and x86-64 system architecture

• All systems require support for MSI-X as defined in the PCI 3.0 specification

• At least one available Mini PCIe or M.2 module slot

• Python 3.6-3.9

1: Connect the module

1. Make sure the host system where you'll connect the module is shut down.

2. Carefully connect the Coral Mini PCIe or M.2 module to the corresponding module slot on the
host, according to your host system recommendations.

2: Install the PCIe driver and Edge TPU runtime

Next, you need to install both the Coral PCIe driver and the Edge TPU runtime. You can install these packages
on your host computer as follows, either on Linux or on Windows.

The Coral ("Apex") PCIe driver is required to communicate with any Edge TPU device over a PCIe connection,
whereas the Edge TPU runtime provides the required programming interface for the Edge TPU.

2a: On Linux

Before you install the PCIe driver on Linux, you first need to check whether you have a pre-built version of the
driver installed. (Older versions of the driver have a bug that prevents updates and will result in failure when
calling upon the Edge TPU.) So first follow these steps:

1. Check your Linux kernel version with this command:
uname -r

If it prints 4.18 or lower, you should be okay and can skip to begin installing our PCIe driver.

2. If your kernel version is 4.19 or higher, now check if you have a pre-build Apex driver
installed:

3. lsmod | grep apex

If it prints nothing, then you're okay and continue to install our PCIe driver.
If it does print an Apex module name, stop here and follow the workaround to disable Apex
and Gasket.

Now install the PCIe driver and runtime as follows:

1. First, add our Debian package repository to your system (be sure you have an internet
connection):

2. echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee
/etc/apt/sources.list.d/coral-edgetpu.list

3.
4. curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
5.
6. sudo apt-get update

7. Then install the PCIe driver and Edge TPU runtime packages:
8. sudo apt-get install gasket-dkms libedgetpu1-std

9. If the user account you'll be using does not have root permissions, you might need to also add
the following udev rule, and then verify that the "apex" group exists and that your user is
added to it:

10. sudo sh -c "echo 'SUBSYSTEM==\"apex\", MODE=\"0660\", GROUP=\"apex\"' >> /etc/udev/rules.d/65-
apex.rules"

11.
12. sudo groupadd apex
13.
14. sudo adduser $USER apex

15. Now reboot the system.

16. Once rebooted, verify that the accelerator module is detected:

https://coral.ai/docs/m2/get-started/#2a-on-linux
https://coral.ai/docs/m2/get-started/#2b-on-windows
https://coral.ai/docs/m2/get-started/#workaround-to-disable-apex-and-gasket
https://coral.ai/docs/m2/get-started/#workaround-to-disable-apex-and-gasket

17. lspci -nn | grep 089a

You should see something like this:

03:00.0 System peripheral: Device 1ac1:089a

The 03 number and System peripheral name might be different, because those are host-
system specific, but as long as you see a device listed with 089a then you're okay to proceed.

18. Also verify that the PCIe driver is loaded:
19. ls /dev/apex_0

You should simply see the name repeated back:

/dev/apex_0

Now continue to install PyCoral and TensorFlow Lite.

2b: On Windows

You can install both the PCIe driver and the Edge TPU runtime on Windows using our install script as follows:
1. First, make sure you have the latest version of the Microsoft Visual C++ 2019 redistributable.
2. Then download edgetpu_runtime_20220308.zip.
3. Extract the ZIP files and double-click the install.bat file inside.

A console opens to run the install script. When it asks whether you want to enable the
maximum operating frequency, you can answer either "yes" or "no" and it has no effect,
because this setting only affects devices that operate over USB. Because this device instead
operates over PCIe, it uses the maximum operating frequency by default, and may perform
power throttling based on the Edge TPU temperature, as specified by PCIe driver parameters.

That's it. Now install PyCoral and TensorFlow Lite...

3: Install the PyCoral library

PyCoral is a Python library built on top of the TensorFlow Lite library to speed up your development and
provide extra functionality for the Edge TPU.

We recommend you start with the PyCoral API, and we use this API in our example code below, because it
simplifies the amount of code you must write to run an inference. But you can build your own projects using
TensorFlow Lite directly, in either Python or C++.

To install the PyCoral library, use the following commands based on your system.

3a: On Linux

If you're using Debian-based Linux system, install PyCoral (and TensorFlow Lite) as follows:
sudo apt-get install python3-pycoral

3b: On Windows

If you're using Windows, install PyCoral (and TensorFlow Lite) as follows:
python3 -m pip install --extra-index-url https://google-coral.github.io/py-repo/ pycoral~=2.0

Windows users: Instead of typing python3 as shown here (and elsewhere in our docs), you can use
the py launcher. Just be sure you use Python 3.5 or newer.
Alternatively, you can download a specific PyCoral wheel file and pass it to pip install.

https://coral.ai/docs/m2/get-started/#3-install-the-pycoral-library
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://github.com/google-coral/libedgetpu/releases/download/release-grouper/edgetpu_runtime_20220308.zip
https://coral.ai/docs/pcie-parameters/
https://docs.python.org/3/using/windows.html#python-launcher-for-windows
https://docs.python.org/3/using/windows.html#python-launcher-for-windows
https://coral.ai/software/#pycoral-api

4: Run a model on the Edge TPU

Now you're ready to run an inference on the Edge TPU.
Windows users: The following code relies on a Bash script to install dependencies. If you're new to using
Bash on Windows, we suggest you try either Windows Subsystem for Linux or Git Bash from Git for
Windows.

Follow these steps to perform image classification with our example code and MobileNet v2:

1. Download the example code from GitHub:
2. mkdir coral && cd coral
3.
4. git clone https://github.com/google-coral/pycoral.git
5.

cd pycoral

6. Download the model, labels, and bird photo:
bash examples/install_requirements.sh classify_image.py

7. Run the image classifier with the bird photo (shown in figure 1):

8. python3 examples/classify_image.py \

9. --model test_data/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite \

10. --labels test_data/inat_bird_labels.txt \
--input test_data/parrot.jpg

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gitforwindows.org/
https://gitforwindows.org/

Figure 1. parrot.jpg

You should see results like this:
INFO: Initialized TensorFlow Lite runtime.
----INFERENCE TIME----
Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU
memory.
11.8ms
3.0ms
2.8ms
2.9ms
2.9ms
-------RESULTS--------
Ara macao (Scarlet Macaw): 0.75781

Congrats! You just performed an inference on the Edge TPU using TensorFlow Lite.

To demonstrate varying inference speeds, the example repeats the same inference five times. Your inference
speeds might differ based on your host system.

The top classification label is printed with the confidence score, from 0 to 1.0.
To learn more about how the code works, take a look at the classify_image.py source code and read about
how to run inference with TensorFlow Lite.
Note: The example above uses the PyCoral API, which calls into the TensorFlow Lite Python API, but you
can instead directly call the TensorFlow Lite Python API or use the TensorFlow Lite C++ API. For more
information about these options, read the Edge TPU inferencing overview.

Next steps

Important: To sustain maximum performance, the Edge TPU must remain below the maximum
operating temperature specified in the datasheet. By default, if the Edge TPU gets too hot, the PCIe driver
slowly reduces the operating frequency and it may reset the Edge TPU to avoid permanent damage. To
learn more, including how to configure the frequency scaling thresholds, read how to manage the PCIe
module temperature.
To run some other models, such as real-time object detection, pose estimation, keyphrase detection, on-device
transfer learning, and others, check out our example projects. In particular, if you want to try running a model
with camera input, try one of the several camera examples.

If you want to train your own model, try these tutorials:
• Retrain an image classification model using post-training quantization (runs in Google Colab)
• Retrain an image classification model using quantization-aware training (runs in Docker)
• Retrain an object detection model using quantization-aware training (runs in Docker)

Or to create your own model that's compatible with the Edge TPU, read TensorFlow Models on the Edge TPU.

The following section describes how the power throttling works and how to customize the trip points.

Troubleshooting on Linux

Here are some solutions to possible problems on Linux.

HIB error

If you are running on ARM64 platform and receive error messages such as the following when you run an
inference...
HIB Error. hib_error_status = 0000000000002200, hib_first_error_status = 0000000000000200

... You should be able to solve it if you modify your kernel command line arguments to
include gasket.dma_bit_mask=32.
For information about how to modify your kernel command line arguments, refer to your respective platform
documentation. For bootloaders based on U-Boot, you can usually modify the arguments either by modifying
the bootargs U-Boot environment variable or by setting othbootargs environment variable as follows:
=> setenv othbootargs gasket.dma_bit_mask=32
=> printenv othbootargs
othbootargs=gasket.dma_bit_mask=32
=> saveenv

If you make the above change and then receive errors such as, DMA: Out of SW-IOMMU space, then you need to
increase the swiotlb buffer size by adding another kernel command line argument: swiotlb=65536.

https://github.com/google-coral/pycoral/blob/master/examples/classify_image.py
https://github.com/google-coral/pycoral/blob/master/examples/classify_image.py
https://www.tensorflow.org/lite/guide/inference#load_and_run_a_model_in_python
https://coral.ai/docs/edgetpu/inference/
https://coral.ai/docs/pcie-parameters/
https://coral.ai/docs/pcie-parameters/
https://coral.ai/examples/
https://github.com/google-coral/examples-camera
https://colab.sandbox.google.com/github/google-coral/tutorials/blob/master/retrain_classification_ptq_tf1.ipynb
https://coral.ai/docs/edgetpu/retrain-classification/
https://coral.ai/docs/edgetpu/retrain-detection/
https://coral.ai/docs/edgetpu/models-intro/

pcieport error

If you see a lot of errors such as the following:
pcieport 0000:00:01.0: PCIe Bus Error: severity=Corrected, type=Data Link Layer, id=0008(Transmitter ID)
pcieport 0000:00:01.0: device [10de:0fae] error status/mask=00003100/00002000
pcieport 0000:00:01.0: [8] RELAY_NUM Rollover
pcieport 0000:00:01.0: [12] Replay Timer Timeout
pcieport 0000:00:01.0: PCIe Bus Error: severity=Uncorrected (Non-Fatal), type=Transaction Layer, id=0008(Requester ID)
pcieport 0000:00:01.0: device [10de:0fae] error status/mask=00004000/00000000

... You should be able to solve it if you modify your kernel command line arguments to include pcie_aspm=off.
For information about how to modify your kernel command line arguments, refer to your respective platform
documentation. If your device includes U-Boot, see the previous HIB error for an example of how to modify the
kernel commands. For certain other devices, you might instead add pcie_aspm=off to an APPEND line in your
system /boot/extlinux/extlinux.conf file:
LABEL primary
 MENU LABEL primary kernel
 LINUX /boot/Image
 INITRD /boot/initrd
 APPEND ${cbootargs} quiet pcie_aspm=off

Workaround to disable Apex and Gasket

The following procedure is necessary only if your system includes a pre-build driver for Apex devices (as per
the first steps for installing the PCIe driver). Due to a bug, updating this driver with ours can fail, so you need to
first disable the apex and gasket modules as follows:

1. Create a new file at /etc/modprobe.d/blacklist-apex.conf and add these two lines:

2. blacklist gasket

3. blacklist apex

4. Reboot the system.
5. Verify that the apex and gasket modules did not load by running this:
6. lsmod | grep apex

It should print nothing.
7. Now follow the rest of the steps to install the PCIe driver.
8. Finally, delete /etc/modprobe.d/blacklist-apex.conf and reboot your system.

Manage the PCIe module temperature
Coral products that integrate the Edge TPU over PCIe must be operated using the Coral PCIe driver. This driver
handles all device communications, but it also allows you to respond to the Edge TPU temperature and
configure dynamic frequency scaling (DFS) thresholds. This page describes how you can use these features to
maintain an optimal operating temperature with a PCIe-based Edge TPU.

This document applies to only the following products:
• System-on-Module
• Mini PCIe Accelerator
• M.2 Accelerator A+E key
• M.2 Accelerator B+M key
• M.2 Accelerator with Dual Edge TPU
• Accelerator Module

Note: To install the Coral PCIe driver, see the "get started" guide for your product (follow the above
links).

https://coral.ai/docs/m2/get-started/#hib-error
https://coral.ai/docs/m2/get-started/#1-install-the-pcie-driver
https://coral.ai/docs/m2/get-started/#1-install-the-pcie-driver
https://coral.ai/products/som/
https://coral.ai/products/m2-accelerator-ae/
https://coral.ai/products/m2-accelerator-ae/
https://coral.ai/products/m2-accelerator-bm/
https://coral.ai/products/m2-accelerator-dual-edgetpu
https://coral.ai/products/accelerator-module/

PCIe parameters overview

The PCIe products listed above do not include a thermal solution to dissipate heat from the system. So in order
to sustain maximum performance from the Edge TPU and avoid permanent damage, you must design your
system so the Edge TPU always operates below the maximum operating temperature specified in the product
datasheet.

To help you do so, the Coral PCIe driver includes some programmable parameters that help you manage the
Edge TPU temperature in the following ways:

• Read the Edge TPU temperature and then, if necessary, activate a cooling solution (such as a
fan) or load-balance your work across other Edge TPUs in the system.

• Use dynamic frequency scaling (DFS)—also known as throttling—to incrementally reduce the
Edge TPU operating frequency as it heats up.

• Shut down the Edge TPU when it reaches a critical temperature (highly recommended).

To employ any combination of these strategies, you need to read or write the Coral PCIe driver parameters
defined in the following tables.
Exactly how you can read and write these parameters depends on your operating system, and is explained in
the following sections (see the instructions for Linux and for Windows).

Read the Edge TPU temperature

You can periodically read the Edge TPU temperature using the temp parameter, and then respond with your
own strategies to cool the system or load-balance your work.

Table 1. Read-only temperature parameter

Parameter Description Units

temp

The current
Edge TPU
junction
temperature.
On Linux, this
is available
via device-
specific sysfs
nodes only
(not from the
kernel
module).

On Windows,
this is
available via
performance
counters only
(not from the
Windows
Registry).

Millidegree Celsius

https://coral.ai/docs/pcie-parameters/#using-the-parameters-on-linux
https://coral.ai/docs/pcie-parameters/#using-the-parameters-on-windows

Use dynamic frequency scaling

By default, the Coral PCIe driver runs the Edge TPU at the maximum frequency of 500 MHz. Under some
circumstances, extended operation at this frequency can cause overheating. So the PCIe driver includes a
power throttling mechanism (known as dynamic frequency scaling, or DFS) that's enabled by default. This
system periodically checks the Edge TPU temperature, and as it reaches the "trip points" specified by
parameters in table 2, it reduces the Edge TPU operating frequency in 50-percent increments.

By reducing the operating frequency, the Edge TPU's inferencing speed becomes slower, but it also consumes
less power and hopefully avoids reaching higher temperatures at which the Edge TPU may shut down or
become permanently damaged.

As long as the chip does not shut down and the Edge TPU returns to lower temperatures, the DFS system
restores the operating frequency in the reverse manner—ultimately returning to the maximum operating
frequency.

Table 2. Parameters to configure dynamic frequency scaling

Parameter Description
Default
value

Units

trip_point0_temp

If the Edge
TPU
temperature
reaches or
exceeds this
value, the
system sets
the
operating
frequency to
"reduced"
(250 MHz)

85000 Millidegree Celsius

trip_point1_temp

If the Edge
TPU
temperature
reaches or
exceeds this
value, the
system sets
the
operating
frequency to
"low" (125
MHz)

90000 Millidegree Celsius

trip_point2_temp

If the Edge
TPU
temperature
reaches or

95000 Millidegree Celsius

Table 2. Parameters to configure dynamic frequency scaling

Parameter Description
Default
value

Units

exceeds this
value, the
system sets
the
operating
frequency to
"lowest"
(62.5 MHz)

temp_poll_interval

The interval
at which to
read the
temperature.
Setting this
to 0 disables
DFS
completely.
This should
be several
seconds
because the
temperature
reading
doesn't
change
instantly. Yet,
it also doesn't
need to be
much larger
than the
default
because the
overhead of
switching the
operating
frequency is
negligible, so
it isn't
necessary to
implement
hysteresis
around the
trip points.

5000 Milliseconds

Whatever values you set for the trip_point* parameters, they must evaluate as follows:
trip_point0_temp <= trip_point1_temp <= trip_point2_temp

If you set values that don't match this logic, the driver silently reverts to the default values in table 2.
Note: You cannot manually specify the Edge TPU operating frequency. The Coral PCIe driver always runs
the Edge TPU at the maximum frequency (500 MHz), except when it's reduced by DFS, as described
above.

Configure the shutdown/warning temperatures

The parameters in table 3 have different behaviors depending on whether you're using the Accelerator Module
(the solderable module) or one of the PCIe card modules (such as the Mini PCIe Accelerator or an M.2
Accelerator):

• Accelerator Module: You can specify temperatures at which certain pins assert to warn you
that the Edge TPU has reached that temperature. You can respond in whatever way suits your
system, such as enabling a fan or shutting down the module.

• PCIe card modules: You can specify the temperature at which the Edge TPU will shut down.
You will not receive any warnings. If you want to manually respond to temperature changes,
you can instead poll the temp parameter in table 1.

Table 3. Parameters to shut down the Edge TPU

Parameter

Description
Default
value

Units
PCIe card
modules

Accelerator Module

hw_temp_warn1 Not available.
If the Edge TPU reaches or
exceeds this temperature, the
Edge TPU asserts the INTR line.

100000 Millidegree
Celsius

hw_temp_warn1_en Not available. Enables/disables hw_temp_warn1. 1

Boolean:
1 =
enabled
0 =
disabled

hw_temp_warn2

If the Edge TPU
reaches or
exceeds this
temperature, the
Edge TPU shuts
down.1

When the Edge
TPU shuts down, it
enters an idle
state. Generally,
you must then
restart your
system to resume
work with the
Edge TPU.

If the Edge TPU reaches or
exceeds this temperature, the
Edge TPU asserts the
SD_ALARM line. It's your
responsibility to shut down the
Accelerator Module.

100000 Millidegree
Celsius

Table 3. Parameters to shut down the Edge TPU

Parameter

Description
Default
value

Units
PCIe card
modules

Accelerator Module

hw_temp_warn2_en Enables/disables hw_temp_warn2. 1

Boolean:
1 =
enabled
0 =
disabled

1 This parameter is saved to a register in the Edge TPU (as are all parameters) and the shutdown mechanism is fully contained inside the PCIe
card module. So even if the host system fails, the Edge TPU will safely shut down if it reaches this temperature.
Notice: The default values for the temperature warnings are conservative. You should change them
based on your hardware's thermal properties. Just be sure the Edge TPU junction temperature never
exceeds the maximum rating indicated in the product datasheet.
Warning: We strongly recommend that you use hw_temp_warn2 to shut down the Edge TPU before it
exceeds the maximum operating temperature specified in the product datasheet. Failure to do so can
result in permanent damage to the Edge TPU and surrounding components, and can possibly cause fire
and other serious damage, injury, or death.

Using the parameters on Linux

On Linux, you can access the Coral PCIe driver parameters with files that are accessible as either kernel module
parameters or sysfs nodes:

• The kernel module parameters are located in this path:
/sys/module/apex/parameters/
These parameters are persistent and applied at boot time. This is useful if you have multiple
modules for which you want to apply the same settings. For details about how to edit these,
see how to specify kernel module parameters.

• The sysfs nodes for each module are located at paths such as this:
/sys/class/apex/apex_0
These sysfs nodes are created by the PCIe driver at boot time and allow you to set different
settings for different PCIe modules. The file name includes a unique number for each Edge
TPU connected via PCIe (such as apex_0, apex_1, apex_2, and so on).

Note: All kernel module parameters apply at system boot time and apply the same setting to all Edge
TPUs, whereas the individual sysfs nodes take immediate effect and apply to separate Edge TPUs.
Whether you decide to use the kernel module parameters or the individual sysfs node parameters, the files
that specify each PCIe parameter are named the same as shown in tables 1, 2, and 3 (although the parameter to
read the temperature is available only as a sysfs node).

Using the parameters on Windows

On Windows 10, you can access the Coral PCIe driver parameters using the Windows Registry as follows:

1. Launch Registry Editor (type "regedit" from the Run window; you must be admin).
2. Open the following path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\coral\Parameters

https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html

You should see the PCIe parameters as registry keys, as shown in figure 1.

Figure 1. Coral PCIe parameters in Registry Editor

3. Double-click to edit any of the parameters.

4. Reboot your system to apply any changes.
Note: Each PCIe parameter available in the Windows Registry applies the same setting to all Edge TPUs—
you cannot set different parameters for separate Edge TPU on Windows.
However, notice that the temp parameter is not available in the Windows Registry, because this parameter
changes over time and is read-only. Instead, you can see the current temperature with the Windows
Performance Monitor as follows:

1. Launch Performance Monitor (type "perfmon" in the Run window).

2. Select Performance Monitor in the left pane, and click Add in the toolbar.
3. In the Add Counters dialog, select the Coral PCIe Accelerator counter, select which instances

you want to view, and then click OK.

Figure 2. The Add Counters dialog

The activity chart then shows the Edge TPU temperature over time in degrees Celcius. But
notice that the actual value below the chart is in millidegree Celsius (as indicated in table 1).

Figure 3. The temperature for multiple Edge TPUs in Performance Monitor

You can also get the Edge TPU temperature with the following PowerShell command:
Get-Counter -Counter '\Coral PCIE Accelerator(*)\Temperature'

Or, you can write your own tool to consume performance counter data.

https://docs.microsoft.com/en-us/windows/win32/perfctrs/consuming-counter-data

