
The Dev Board provides access to several peripheral interfaces through the 40-pin expansion header, including GPIO,
I2C, UART, and SPI. This page describes how you can interact with devices connected to these pins.

Because the Dev Board runs Mendel Linux, you can interact with the pins from user space using Linux interfaces such
as device files (/dev) and sysfs files (/sys). There are also several API libraries you can use to program the peripherals
connected to these pins. This page describes a few API options, including python-periphery, Adafruit Blinka, and
libgpiod.

All I/O pins on the 40-pin header are powered by the 3.3 V power rail, with a programmable impedance of 40-
255 ohms, and a max current of ~82 mA.

Figure 1. Default pin functions on the 40-pin header

Warning: When handling the I/O pins, be cautious to avoid electrostatic discharge or contact with
conductive materials (metals). Failure to properly handle the board can result in a short circuit, electric
shock, serious injury, death, fire, or damage to your board and other property.

Connect to the Dev Board
I/O pins

Copyright 2020 Google LLC. All rights reserved.

https://coral.googlesource.com/docs/+/refs/heads/master/ReadMe.md

Header pinout
Table 1 shows the header pinout, including the device or sysfs file for each pin, plus the character device numbers. For a
pinout that includes the SoC pin names see the Dev Board datasheet instead. You can also see the header pinout from
the command line by typing pinout on the Dev Board.

Note: All I/O pins have a 90k pull-down resistor inside the iMX8M SoC that is used by default during
bootup, except for the I2C pins, which instead have a pull-up to 3.3 V on the SoM.

Caution: Do not connect a device that draws more than ~82 mA of power or you will brownout the
system.

Copyright 2020 Google LLC. All rights reserved.

https://coral.ai/docs/dev-board/datasheet/#gpio-header-pinout

Table 1. Pinout for the Dev Board 40-pin header, with device file names and character device IDs (chip_number,
line_number)

Chip,
line

Device path Pin function Pin Pin
function

Device path

+3.3 V 1 2 +5 V

/dev/i2c-1 I2C2_SDA 3 4 +5 V

/dev/i2c-1 I2C2_SCL 5 6 Ground

/dev/ttymxc2 UART3_TXD 7 8 UART1_TXD /dev/ttymxc0

Ground 9 10 UART1_RXD /dev/ttymxc0

/dev/ttymxc2 UART3_RXD 11 12 SAI1_TXC

0, 6 /sys/class/gpio/gpio6 GPIO_P13 13 14 Ground

2, 0 /sys/class/pwm/pwmchip2/pwm0 PWM3 15 16 GPIO_P16 /sys/class/gpio/gpio73

+3.3 V 17 18 GPIO_P18 /sys/class/gpio/gpio138

/dev/spidev0 ECSPI1_MOSI 19 20 Ground

/dev/spidev0 ECSPI1_MISO 21 22 GPIO_P22 /sys/class/gpio/gpio140

/dev/spidev0 ECSPI1_SCLK 23 24 ECSPI1_SS0 /dev/spidev0.0

Ground 25 26 ECSPI1_SS1 /dev/spidev0.1

/dev/i2c-2 I2C3_SDA 27 28 I2C3_SCL /dev/i2c-2

0, 7 /sys/class/gpio/gpio7 GPIO_P29 29 30 Ground

Copyright 2020 Google LLC. All rights reserved.

For further information on the various interfaces, see the i.MX 8M Dual/8M QuadLite/8M Quad Applications
Processors Reference Manual.

Program with python-periphery
The python-periphery library provides a generic Linux interface that's built atop the sysfs and character device
interface, providing APIs to control GPIO, PWM, I2C, SPI, and UART pins.

You can install the library on your Dev Board as follows:

python3 -m pip install python-periphery

The Periphery library allows you to select a GPIO or PWM pin with a pin number. Other interfaces, such as I2C and UART
pins must be specified using the pin's device path. See the following examples.

Note: The Synchronous Audio Interface (SAI) pins are not accessible using python-periphery. For details,
see the i.MX 8M reference manual.

GPIO

You can instantiate a GPIO object using either the sysfs path (deprecated) or the character device numbers.

The following code instantiates each GPIO pin as input using the character devices:

Chip,
line

Device path Pin function Pin Pin
function

Device path

0, 8 /sys/class/gpio/gpio8 GPIO_P31 31 32 PWM1 /sys/class/pwm/pwmchip0/pwm

1, 0 /sys/class/pwm/pwmchip1/pwm0 PWM2 33 34 Ground

SSAI1_TXFS 35 36 GPIO_P36 /sys/class/gpio/gpio141

2, 13 /sys/class/gpio/gpio77 GPIO_P37 37 38 SAI1_RXD0

Ground 39 40 SAI1_TXD0

Copyright 2020 Google LLC. All rights reserved.

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-8-processors/i.mx-8m-family-armcortex-a53-cortex-m4-audio-voice-video:i.MX8M?tab=Documentation_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-8-processors/i.mx-8m-family-armcortex-a53-cortex-m4-audio-voice-video:i.MX8M?tab=Documentation_Tab
https://python-periphery.readthedocs.io/en/latest/index.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-8-processors/i.mx-8m-family-armcortex-a53-cortex-m4-audio-voice-video:i.MX8M?tab=Documentation_Tab
https://python-periphery.readthedocs.io/en/latest/gpio.html
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

gpio_p13 = GPIO("/dev/gpiochip0", 6, "in")
gpio_p18 = GPIO("/dev/gpiochip4", 10, "in")
gpio_p22 = GPIO("/dev/gpiochip4", 12, "in")
gpio_p29 = GPIO("/dev/gpiochip0", 7, "in")
gpio_p31 = GPIO("/dev/gpiochip0", 8, "in")
gpio_p36 = GPIO("/dev/gpiochip4", 13, "in")

gpio_p16 = GPIO("/dev/gpiochip2", 9, "out")
gpio_p37 = GPIO("/dev/gpiochip2", 13, "out")

Note: GPIO_P16 and GPIO_P37 currently support only the "out" direction.

For example, here's how to turn on an LED when you push a button:

from periphery import GPIO

led = GPIO("/dev/gpiochip2", 13, "out") # pin 37
button = GPIO("/dev/gpiochip4", 13, "in") # pin 36

try:
 while True:
 led.write(button.read())
finally:
 led.write(False)
 led.close()
 button.close()

For more examples, see the periphery GPIO documentation.

PWM

The following code shows how to instantiate each of the PWM pins with Periphery:

pwm1 = PWM(0, 0)
pwm2 = PWM(1, 0)
pwm3 = PWM(2, 0)

For usage examples, see the periphery PWM documentation.

Copyright 2020 Google LLC. All rights reserved.

https://python-periphery.readthedocs.io/en/latest/gpio.html
https://python-periphery.readthedocs.io/en/latest/pwm.html

I2C

The following code shows how to instantiate each of the I2C ports with Periphery:

i2c2 = I2C("/dev/i2c-1")
i2c3 = I2C("/dev/i2c-2")

For usage examples, see the periphery I2C documentation.

SPI

The following code shows how to instantiate each of the SPI ports with Periphery:

SPI1, SS0, Mode 0, 10MHz
spi1_0 = SPI("/dev/spidev0.0", 0, 10000000)
SPI1, SS1, Mode 0, 10MHz
spi1_1 = SPI("/dev/spidev0.1", 0, 10000000)

For usage examples, see the periphery SPI documentation.

Help! If you receive a Permission denied error when trying to access the SPI device, it should be fixed if you
run the following:

sudo apt-get update && sudo apt-get dist-upgrade

sudo reboot now

UART

The following code shows how to instantiate each of the UART ports with Periphery:

UART1, 115200 baud
uart1 = Serial("/dev/ttymxc0", 115200)
UART3, 9600 baud
uart3 = Serial("/dev/ttymxc2", 9600)

Copyright 2020 Google LLC. All rights reserved.

https://python-periphery.readthedocs.io/en/latest/i2c.html
https://python-periphery.readthedocs.io/en/latest/spi.html

Caution: UART1 is shared with the Linux serial console. To use the UART1 port in your application, you must
disable the serial console with the following command:

systemctl stop serial-getty@ttymxc0.servicesystemctl stop serial-getty@ttymxc0.service

For usage examples, see the periphery Serial documentation.

Program with Adafruit Blinka
The Blinka library not only offers a simple API for GPIO, PWM, I2C, and SPI, but also provides compatibility with a long
list of sensor libraries built for CircuitPython. That means you can reuse CircuitPython code for peripherals that was
originally used on microcontrollers or other boards such as Raspberry Pi.

To get started, install Blinka and libgpiod on your Dev Board Mini as follows:

sudo apt-get install python3-libgpiod

python3 -m pip install adafruit-blinka

Then you can turn on an LED when you push a button as follows (notice this uses pin names from the pinout above):

import board
import digitalio

led = digitalio.DigitalInOut(board.GPIO_P37) # pin 37
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.GPIO_P36) # pin 36
button.direction = digitalio.Direction.INPUT

try:
 while True:
 led.value = button.value
finally:
 led.value = False
 led.deinit()
 button.deinit()

For more information, including example code using I2C and SPI, see the Adafruit guide for CircuitPython libraries on
Coral. But we suggest you skip their setup guide and install Blinka as shown above. Also check out the Blinka API
reference.

Copyright 2020 Google LLC. All rights reserved.

https://python-periphery.readthedocs.io/en/latest/serial.html
https://circuitpython.readthedocs.io/projects/blinka/en/latest/index.html
https://learn.adafruit.com/circuitpython-on-google-coral-linux-blinka/overview
https://learn.adafruit.com/circuitpython-on-google-coral-linux-blinka/overview
https://circuitpython.readthedocs.io/projects/blinka/en/latest/index.html
https://circuitpython.readthedocs.io/projects/blinka/en/latest/index.html

Program GPIOs with libgpiod
You can also interact with the GPIO pins using the libgpiod library, which provides both C++ and Python API bindings.
But libgpiod is for GPIOs only, not any digital protocols. (The Blinka library uses libgpiod as its implementation for
GPIOs.)

There's currently no online API docs for libgpiod, but the source code is fully documented. If you clone the repo, you can
build C++ docs with Doxygen. For Python, you can install the libgpiod package and print the API docs as follows:

sudo apt-get install python3-libgpiod

python3 -c 'import gpiod; help(gpiod)'

Then you can turn on an LED when you push a button as follows:

import gpiod

CONSUMER = "led-demo"
chip2 = gpiod.Chip("2", gpiod.Chip.OPEN_BY_NUMBER)
chip4 = gpiod.Chip("4", gpiod.Chip.OPEN_BY_NUMBER)

led = chip2.get_line(13) # pin 37
led.request(consumer=CONSUMER, type=gpiod.LINE_REQ_DIR_OUT, default_vals=[0])
button = chip4.get_line(13) # pin 36
button.request(consumer=CONSUMER, type=gpiod.LINE_REQ_DIR_IN)

try:
 while True:
 led.set_value(button.get_value())
finally:
 led.set_value(0)
 led.release()
 button.release()

Copyright 2020 Google LLC. All rights reserved.

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/about/

