
To perform real-time inferencing with a vision model, you can connect the Dev Board to the Coral Camera or a USB
camera.

Once you connect your camera, try the demo scripts below.

Note: The CSI cable connector on the Dev Board is designed to be compatible with the Coral Camera
only.

Connect the Coral Camera
The Coral Camera connects to the CSI connector on the bottom of the Dev Board.

Connect a camera to the
Dev Board

Copyright 2020 Google LLC. All rights reserved.

https://coral.ai/products/camera/
https://coral.ai/products/camera/

You can connect the camera to the Dev Board as follows:

�. Make sure the board is powered off and unplugged.

�. On the bottom of the Dev Board, locate the CSI "Camera Connector" and flip the small black latch so it's facing
upward, as shown in figure 1.

Figure 1. The camera connector with the latch open

�. Slide the flex cable into the connector with the contact pins facing toward the board (the blue strip is facing away
from the board), as shown in figure 2.

�. Close the black latch.

Copyright 2020 Google LLC. All rights reserved.

Figure 2. The camera cable inserted and the latch closed

�. Likewise, connect the other end of the flex cable to the matching connector on the camera module.

Figure 3. The camera cable inserted in the camera module

�. Power on the board and verify it detects the camera by running this command:

v4l2-ctl --list-devices

You should see the camera listed as /dev/video0:

i.MX6S_CSI (platform:30a90000.csi1_bridge):
 /dev/video0

For a quick camera test, connect to the board's shell terminal and run the snapshot tool:

snapshot

If you have a monitor attached to the board, you'll see the live camera feed. Copyright 2020 Google LLC. All rights reserved.

You can press Spacebar to save an image to the home directory.

Then try running a model with the demo scripts below.

Connect a USB camera
Any USB camera that matches the USB UVC standard should be compatible with the Dev Board.

Just plug in the camera to the USB-A port. (It's okay if the board is already powered on.)

Then enter the following command to list the camera's supported video formats:

v4l2-ctl --list-formats-ext --device /dev/video1

You should see a long list of results that looks something like this:

ioctl: VIDIOC_ENUM_FMT
 Index : 0
 Type : Video Capture
 Pixel Format: 'YUYV'
 Name : YUYV 4:2:2
 Size: Discrete 640x480
 Interval: Discrete 0.033s (30.000 fps)
 Interval: Discrete 0.042s (24.000 fps)
 Interval: Discrete 0.050s (20.000 fps)
 Interval: Discrete 0.067s (15.000 fps)
 Interval: Discrete 0.100s (10.000 fps)
 Interval: Discrete 0.133s (7.500 fps)
 Interval: Discrete 0.200s (5.000 fps)

Take note of the size and available FPS values. You'll need to pass those in the demo scripts below, though the default
values shown below should work for most cameras.

Note: Be sure that your list includes Pixel Format: 'YUYV'. Currently, YUYV is the only format supported. But
the commands below refer to this format with the name YUY2, which is just a different name for the same
thing.

Run a demo with the camera
The Mendel system image on the Dev Board includes two demos that perform real-time image classification and object
detection.

Copyright 2020 Google LLC. All rights reserved.

First, make sure you have the latest software on your board:

sudo apt-get update

sudo apt-get dist-upgrade

Note: The following demo code is optimized for performance on the Dev Board, and you can get the
source code from the edgetpuvision Git repo. If you'd like to see other examples using a camera, which
are more broadly applicable for other devices (not just the Dev Board), see the examples-camera
GitHub repo.

Download the model files

Before you run either demo, you'll need to download the model files on your Dev Board.

First, set this environment variable:

export DEMO_FILES="$HOME/demo_files"

Then download the following models (be sure you're connected to the internet):

The image classification model and labels file
wget -P ${DEMO_FILES}/ https://github.com/google-coral/test_data/raw/master/mobilenet_v2_1.0_

wget -P ${DEMO_FILES}/ https://raw.githubusercontent.com/google-coral/test_data/release-frogf

The face detection model (does not require a labels file)
wget -P ${DEMO_FILES}/ https://github.com/google-coral/test_data/raw/master/ssd_mobilenet_v2_f

To run each demo, we've provided two ways to see the video and inference results:

Using a monitor attached to the Dev Board via HDMI

Using a streaming server that allows you to see the video from another computer's web browser when on the
same network

View on a monitor

The following demos require that you have a monitor connected to the HDMI port on the Dev Board so you can see the
video.

Copyright 2020 Google LLC. All rights reserved.

https://coral.googlesource.com/edgetpuvision/
https://github.com/google-coral/examples-camera
https://github.com/google-coral/examples-camera
https://coral.ai/docs/dev-board/get-started/#connect-internet

Note: By default, the Dev Board is locked at a 1920x1080 output, so your monitor must support this
resolution or nothing will appear. If your monitor does not support 1920x1080, you can change the
default video output.

Run the image classi�cation model with a monitor
This demo classifies 1,000 different objects shown to the camera.

If you're using the Coral Camera:

edgetpu_classify \
--model ${DEMO_FILES}/mobilenet_v2_1.0_224_quant_edgetpu.tflite \
--labels ${DEMO_FILES}/imagenet_labels.txt

If you're using a USB camera:

edgetpu_classify \
--source /dev/video1:YUY2:800x600:24/1 \
--model ${DEMO_FILES}/mobilenet_v2_1.0_224_quant_edgetpu.tflite \
--labels ${DEMO_FILES}/imagenet_labels.txt

In the --source argument (for the USB camera only), you must specify 4 parameters using values printed during the
USB camera setup:

/dev/video1 is the device file. Yours should be the same if it's the only attached camera.

YUY2 is the only supported pixel format (same as YUYV).

800x600 is the image resolution. This must match one of the resolutions listed for your camera.

24/1 is the framerate. It must also match one of the listed FPS values for the given format.

Run the face detection model with a monitor
This demo draws a box around any detected human faces.

If you're using the Coral Camera:

edgetpu_detect \
--model ${DEMO_FILES}/ssd_mobilenet_v2_face_quant_postprocess_edgetpu.tflite

If you're using a USB camera:
Copyright 2020 Google LLC. All rights reserved.

https://coral.ai/docs/dev-board/datasheet/#hdmi-port
https://coral.ai/docs/dev-board/datasheet/#hdmi-port

edgetpu_detect \
--source /dev/video1:YUY2:800x600:24/1 \
--model ${DEMO_FILES}/ssd_mobilenet_v2_face_quant_postprocess_edgetpu.tflite

See the previous section for details about the --source arguments.

View with a streaming server

These demos require that your Dev Board be network-accessible from another computer (such as when connected to
the board shell via MDT) so you can see the camera output in a web browser.

Note: We recommend using Chrome to view the camera streams. Other browsers might not show the
image overlays.

Run the image classi�cation model with a streaming server
This demo classifies 1,000 different objects shown to the camera.

If you're using the Coral Camera:

edgetpu_classify_server \
--model ${DEMO_FILES}/mobilenet_v2_1.0_224_quant_edgetpu.tflite \
--labels ${DEMO_FILES}/imagenet_labels.txt

If you're using a USB camera:

edgetpu_classify_server \
--source /dev/video1:YUY2:800x600:24/1 \
--model ${DEMO_FILES}/mobilenet_v2_1.0_224_quant_edgetpu.tflite \
--labels ${DEMO_FILES}/imagenet_labels.txt

In the --source argument (for the USB camera only), you must specify 4 parameters using values printed during the
USB camera setup:

/dev/video1 is the device file. Yours should be the same if it's the only attached camera.

YUY2 is the only supported pixel format (same as YUYV).

800x600 is the image resolution. This must match one of the resolutions listed for your camera.

24/1 is the framerate. It must also match one of the listed FPS values for the given format.

With either camera type, you should see the following message: Copyright 2020 Google LLC. All rights reserved.

https://coral.ai/docs/dev-board/get-started/#connect-via-mdt
https://coral.ai/docs/dev-board/get-started/#connect-via-mdt

INFO:edgetpuvision.streaming.server:Listening on ports tcp: 4665, web: 4664, annexb: 4666

Which means your Dev Board is now hosting a streaming server. So from any computer that can access the board, you
can view the camera stream at http://<board_ip_address>:4664/. For example, if you're connected to the board shell
over USB, then go to http://192.168.100.2:4664/.

Run the face detection model with a streaming server
This demo draws a box around any detected human faces.

If you're using the Coral Camera:

edgetpu_detect_server \
--model ${DEMO_FILES}/ssd_mobilenet_v2_face_quant_postprocess_edgetpu.tflite

If you're using a USB camera:

edgetpu_detect_server \
--source /dev/video1:YUY2:800x600:24/1 \
--model ${DEMO_FILES}/ssd_mobilenet_v2_face_quant_postprocess_edgetpu.tflite

See the previous section for details about the --source arguments.

With either camera type, you should see the following message:

INFO:edgetpuvision.streaming.server:Listening on ports tcp: 4665, web: 4664, annexb: 4666

Which means your Dev Board is now hosting a streaming server. So from any computer that can access the board, you
can view the camera stream at http://<board_ip_address>:4664/. For example, if you're connected to the board shell
via MDT, then go to http://192.168.100.2:4664/.

Try other example code
We have several other examples that are compatible with almost any camera and any Coral device with an Edge TPU
(including the Dev Board). They each show how to stream images from a camera and run classification or detection
models . Each example uses a different camera library, such as GStreamer, OpenCV, and PyGame.

To explore the code and run them, see the instructions at github.com/google-coral/examples-camera.

Copyright 2020 Google LLC. All rights reserved.

https://coral.ai/docs/dev-board/get-started/#connect-via-mdt
https://coral.ai/docs/dev-board/get-started/#connect-via-mdt
http://192.168.100.2:4664/
https://coral.ai/docs/dev-board/get-started/#connect-via-mdt
https://coral.ai/docs/dev-board/get-started/#connect-via-mdt
http://192.168.100.2:4664/
https://github.com/google-coral/examples-camera

