
ARDUINO MICRO

OSH: Schematics, Reference Design, Board size

Arduino / Genuino Micro is open-source hardware! You can build your
own board using the follwing files:

EAGLE FILES IN .ZIPSCHEMATICS IN .PDFBOARD SIZE IN .DXF

Pinout Diagram

Complete Pinout Diagram

https://content.arduino.cc/assets/arduino-micro-reference.zip
https://content.arduino.cc/assets/arduino-micro-reference.zip
http://arduino.cc/documents/dimensioniMicro.dxf
https://content.arduino.cc/assets/Pinout-Micro_latest.pdf

Getting Started with the Arduino

Leonardo, Leonardo ETH and Micro

Use your Leonardo, Leonardo ETH and Micro on

the Arduino Web IDE

All Arduino boards, including this one, work out-of-the-box on the Arduino Web Editor, no need

to install anything.

The Arduino Web Editor is hosted online, therefore it will always be up-to-date with the latest

features and support for all boards. Follow this simple guide to start coding on the browser and

upload your sketches onto your board.

Use your Leonardo, Leonardo ETH and Micro on

the Arduino Desktop IDE

If you want to program your Leonardo, Leonardo ETH and Micro while offline you

need to install the Arduino Desktop IDE.

Installing drivers for Leonardo, Leonardo ETH and Micro

Drivers should be automatically installed plugging with an USB cable the board to

your PC, but with some version of the Windows operative system (like Windows 7,

Vista and 10) it can happen that your board won't be recognized and you will get the

message Unknown USB device. It is so necessary to manually install them following

the guide Manually install Drivers on Windows.

Open the Blink example

Now that you’ve set up your online IDE let’s make sure your computer can talk to the

board, it’s time to make sure you can upload a program. To do that let's open the LED

blink example sketch: File > Examples > 1.Basics > Blink.

https://create.arduino.cc/editor
https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-editor-4b3e4a
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/DriverInstallation
https://create.arduino.cc/editor
https://create.arduino.cc/editor

Select your board

You'll need to select your board in the Tools > Board menu:

 Arduino Leonardo

 Arduino Leonardo ETH

 Arduino/Genuino Micro

according to the board you have.

Select your serial port

Select the serial device of the board from the Tools > Serial Port menu.

Upload and Run your first Sketch

Click the Upload button in the upper left to load and run the sketch on your board:

After the compilation and upload process, you should see the message Done

Uploading and the built-in LED of the board should start blinking.

Tutorials

Now that you have set up and programmed your Leonardo, Leonardo ETH or Micro

board, you may find inspiration in our Project Hub tutorial platform.

More examples on the following library pages will help you in making very cool

things!

 Keyboard - Send keystrokes to an attached computer.

 Mouse - Control cursor movement on a connected computer.

 Ethernet for connecting to the internet using the Arduino Ethernet Shield, Arduino

Ethernet Shield 2 and Arduino Leonardo ETH

Please read...

Good Coding Practice With the Leonardo, Leonardo ETH and Micro

A word of caution on using the USB Mouse and Keyboard Libraries: if the Mouse or

Keyboard library is constantly running, it will be difficult to program your board.

Functions such as Mouse.move() and Keyboard.print() will move your cursor or send

keystrokes to a connected computer and should only be called when you are ready to

handle them. It is recommended to use a control system to turn this functionality on,

like a physical switch or only responding to specific input you can control. When

using the Mouse or Keyboard library, it may be best to test your output first using

Serial.print(). This way, you can be sure you know what values are being reported.

Refer to the Mouse and Keyboard examples for some ways to handle this.

https://create.arduino.cc/projecthub/products/arduino-leonardo
https://www.arduino.cc/en/Reference/MouseKeyboard
https://www.arduino.cc/reference/en/language/functions/usb-leonardo-and-due-only/mouse/
https://www.arduino.cc/en/Reference/Ethernet

Using the serial monitor effectively: Since serial is going through only one processor,

the board is capable of filling your computer's serial buffer faster than the Uno or

earlier boards. You may notice that if you send serial continually, for example like

this:

void loop() {

 int sensorReading = analogRead(A0);

 Serial.println(sensorReading);

}

[Get Code]

the Serial Monitor in the IDE slows down considerably as it tries to keep up. If you

encounter this, add a short delay to your loop so that the computer's serial buffer is not

filled as fast. Even a millisecond delay will help:

void loop() {

 int sensorReading = analogRead(A0);

 Serial.println(sensorReading);

 delay(1);

}

[Get Code]

Serial applications using native libraries other than RXTX library read the serial

buffer faster, so you may not encounter this error much outside of the Serial Monitor,

Processing, or other RXTX-based serial applications.

Differences from the Arduino Uno

In general, you program and use the Leonardo, Leonardo ETH and Micro as you

would other Arduino boards. There are, however, a few important differences.

Single processor for sketches and USB communication

The Leonardo, Leonardo ETH and Micro differ from other Arduino boards in that

they use a single microcontroller to both run your sketches and for USB

communication with the computer. The Uno and other boards use separate

microcontrollers for these two functions, meaning that the USB connection to the

computer remains established regardless of the state of the main microcontroller. By

combining these two functions onto a single processor, the Leonardo allows for more

flexibility in its communication with the computer. It also helps to lower the cost of

the board by removing the need for an additional processor.

https://www.arduino.cc/en/Guide/ArduinoLeonardoMicro?action=sourceblock&num=1
https://www.arduino.cc/en/Guide/ArduinoLeonardoMicro?action=sourceblock&num=2

Serial re-enumeration on reset. Since the boards do not have a dedicated chip to

handle serial communication, it means that the serial port is virtual -- it's a software

routine, both on your operating system, and on the board itself. Just as your computer

creates an instance of the serial port driver when you plug in any Arduino, the

Leonardo/Micro creates a serial instance whenever it runs its bootloader. The board is

an instance of USB's Connected Device Class (CDC) driver.

This means that every time you reset the board, the USB serial connection will be

broken and re-established. The board will disappear from the list of serial ports, and

the list will re-enumerate. Any program that has an open serial connection to the

Leonardo will lose its connection. This is in contrast to the Arduino Uno, with which

you can reset the main processor (the ATmega328P) without closing the USB

connection (which is maintained by the

secondary ATmega8U2 or ATmega16U2 processor). This difference has implications

for driver installation, uploading, and communication; these are discussed below.

No reset when you open the serial port. Unlike the Arduino Uno, the Leonardo and

Micro won't restart your sketch when you open a serial port on the computer. That

means you won't see serial data that's already been sent to the computer by the board,

including, for example, most data sent in the setup() function.

This change means that if you're using any Serial print(), println() or write()

statements in your setup, they won't show up when you open the serial monitor. To

work around this, you can check to see if the serial port is open after

calling Serial.begin() like so:

Serial.begin(9600);

 // while the serial stream is not open, do nothing:

 while (!Serial) ;

[Get Code]

Keyboard and mouse emulation. One advantage of using a single chip for your

sketches and for USB is increased flexibility in the communication with the computer.

While the board appears as a virtual serial port to your operating system (also called

CDC) for programming and communication (as with the Arduino Uno), it can also

behave as a (HID) keyboard or mouse. See the "Good Coding Practice" section below

for a warning about using this functionality.

Separation of USB and serial communication. On the Leonardo, Leonardo ETH and

Micro, the main Serial class refers to the virtual serial driver on the board for

connection to your computer over USB. It's not connected to the physical pins 0 and 1

https://www.arduino.cc/en/Guide/ArduinoLeonardoMicro?action=sourceblock&num=3

as it is on the Uno and earlier boards. To use the hardware serial port (pins 0 and 1,

RX and TX), use Serial1. (See the Serial reference pages for more information.)

Differences in pin capabilities. The Leonardo, Leonardo ETH and Micro has some

slight differences in the capabilities and assignments of various pins (especially for

SPI and TWI). These are detailed on the hardware page.

Uploading Code to the Leonardo, Leonardo ETH and Micro

In general, you upload code to the Leonardo or Micro as you would with the Uno or

other Arduino boards. Click the upload button in the Arduino IDE and your sketch

will be automatically uploaded onto the board and then started. This works more or

less the same way as with the Uno: the Arduino software initiates a reset of the board,

launching the bootloader - which is responsible for receiving, storing, and starting the

new sketch.

However, because the serial port is virtual, it disappears when the board resets, the

Arduino software uses a different strategy for timing the upload than with the Uno and

other boards. In particular, after initiating the auto-reset of the Leonardo, Leonardo

ETH or Micro (using the serial port selected in the Tools > Serial Port menu), the

Arduino software waits for a new virtual (CDC) serial / COM port to appear - one that

it assumes represents the bootloader. It then performs the upload on this newly-

appeared port.

These differences affect the way you use the physical reset button to perform an

upload if the auto-reset isn't working. Press and hold the reset button on the Leonardo

or Micro, then hit the upload button in the Arduino software. Only release the reset

button after you see the message "Uploading..." appear in the software's status bar.

When you do so, the bootloader will start, creating a new virtual (CDC) serial port on

the computer. The software will see that port appear and perform the upload using it.

Again, this is only necessary if the normal upload process (i.e. just pressing the

uploading button) doesn't work. (Note that the auto-reset is initiated when the

computer opens the serial port at 1200 baud and then closes it; this won't work if

something interferes with the board's USB communication - e.g. disabling interrupts.)

https://www.arduino.cc/en/Reference/Serial
https://www.arduino.cc/en/Main/ArduinoBoardLeonardo

