1.44inch LCD HAT for Raspberry Pi

Specification

Operating voltage: 3.3V

Interface: SPILCD type: TFT

Controller: ST7735S

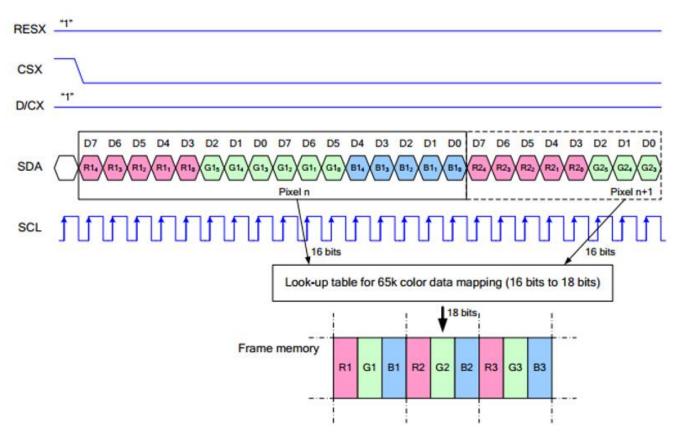
Resolution: 128*128 (Pixel)Display size: 25.5*26.5 (mm)

• Pixel size: 0.129 (W) *0.219 (H) (MM)

• Dimension: 65 x 30.2(mm)

Pinout

PIN	Raspberry Pi Interface (BCM)	Description
KEY1	P21	KEY1GPIO
KEY2	P20	KEY2GPIO
KEY3	P16	KEY3GPIO
Joystick UP	P6	Upward direction of the Joystick
Joystick Down	P19	Downward direction of the Joystick
Joystick Left	P5	Left direction of the Joystick
Joystick Right	P26	Right direction of the Joystick
Joystick Press	P13	Press the Joystick
SCLK	P11/SCLK	SPI clock line
MOSI	P10/MOS	SPI data line
CS	P8/CE0	Chip selection
DC	P25	Data/Command control
RST	P27	Reset
BL	P24	Backlight


LCD and the controller

The ST7735S is a 132*162 pixel LCD controller, but the pixel of the 1.44inch LCD HAT is 128*128. So we have made some processing on the display: the horizontal direction starts from the second pixel, so that to guarantee the location of RAM in the LCD is consistent with the actual location at the same time.

This LCD accepts 8-bits/9-bits/16-bits/18-bits parallel interface, that are RGB444, RGB565, RGB666. The color format used in demo codes is RGB565.

This LCD use 4-lines SPI interface for reducing GPIO and fast speed.LCD

Working Protocol

Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

RESX Is the reset pin, it should be low when powering the module and be higher at other times; ;

CSX is slave chip select, when CS is low, the chip is enabled.

D/CX is data/command control pin, when DC = 0, write command, when DC = 1, write data

SDA is the data pin for transmitting RGB data, it works as the MOSI pin of SPI interface;

SCL worka s the SCLK pins of SPI interface.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

CPOL determines the level of the serial synchronous clock at idle state. When CPOL = 0, the level is Low. However, CPOL has little effect to the transmission.

CPHA determines whether data is collected at the first clock edge or at the second clock edge of serial synchronous clock; when CPHL = 0, data is collected at the first clock edge.

There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0, CPOL = 0.

Enable SPI interface

Open terminal, use command to enter the configuration page

```
sudo raspi-config
Choose Interfacing Options -> SPI -> Yes to enable SPI interface
```

Resources

- User Manual
- Schematic

• Display Desktop of Pi Study Manual

Demo

- Raspberry code
- Demo code

Datasheet

• ST7735S