
Math Mammoth Grade 4-B Worktext

By Maria Miller

Copyright 2017 - 2020 Maria Miller ISBN 978-1-942715-63-4

Edition 1/2020

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, or by any information storage and retrieval system, without permission in writing from the author.

Copying permission: For having purchased this book, the copyright owner grants to the teacher-purchaser a limited permission to reproduce this material for use with his or her students. In other words, the teacher-purchaser MAY make copies of the pages, or an electronic copy of the PDF file, and provide them at no cost to the students he or she is actually teaching, but not to students of other teachers. This permission also extends to the spouse of the purchaser, for the purpose of providing copies for the children in the same family. Sharing the file with anyone else, whether via the Internet or other media, is strictly prohibited.

No permission is granted for resale of the material.

The copyright holder also grants permission to the purchaser to make electronic copies of the material for back-up purposes.

If you have other needs, such as licensing for a school or tutoring center, please contact the author at https://www.MathMammoth.com/contact.php

Contents

Foreword	5
Chapter 5: Division	
Introduction	6
Review of Division	10
Division Terms and Division with Zero	13
Dividing with Whole Tens and Hundreds	15
Order of Operations and Division	18
The Remainder, Part 1	20
The Remainder, Part 2	23
The Remainder, Part 3	25
Long Division 1	27
Long Division 2	31
Long Division 3	34
Long Division with 4-Digit Numbers	38
More Long Division	42
Remainder Problems	45
Long Division with Money	49
Long Division Crossword Puzzle	51
Average	52
Finding Fractional Parts with Division	55
Problems with Fractional Parts	58
Problems to Solve	60
Divisibility	63
Prime Numbers	67
Finding Factors	70
Mixed Review Chapter 5	72
Review Chapter 5	74
Chapter 6: Geometry	
Introduction	77
Review: Area of Rectangles	81
Problem Solving: Area of Rectangles	84
Review: Area and Perimeter	86

Lines, Rays, and Angles	90
Measuring Angles	93
Drawing Angles	100
Estimating Angles	102
Angle Problems	107
Parallel and Perpendicular Lines	112
Parallelograms	117
Triangles	120
Line Symmetry	124
Mixed Review Chapter 6	127
Review Chapter 6	129
Chapter 7: Fractions	
Introduction	133
One Whole and Its Fractional Parts	137
Mixed Numbers	140
Mixed Numbers and Fractions	144
Adding Fractions	147
Adding Mixed Numbers	149
Equivalent Fractions	152
Subtracting Fractions and Mixed Numbers	157
Comparing Fractions	161
Multiplying Fractions by Whole Numbers	165
Practicing with Fractions	168
Mixed Review Chapter 7	170
Review Chapter 7	172
Chapter 8: Decimals	
Introduction	174
Decimal Numbers—Tenths	177
Adding and Subtracting with Tenths	179
Two Decimal Digits—Hundredths	181
Add and Subtract Decimals in Columns	_
	188
Using Decimals with Measuring Units	
Mixed Review Chapter 8	
Review Chapter 8	

Review of Division

Multiplication has to do with equal-size groups: 2×4 means 2 groups of 4.

Division is the opposite operation of multiplication, and it *also* has to do with equal-size groups:

8 ÷ 4 can mean, "How many groups of 4 are in 8?"

It can also mean, "How many in each group, when 8 things are put into 4 groups?"

Division has two "meanings":

- Dividing to find how many are in each group.
- Dividing into groups of a certain size.

 $2 \times 6 = 12$

"12 divided into 2 groups; how many in each group?"

$$12 \div 2 = 6$$

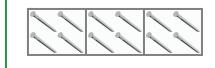
<u>OR</u>

"How many sixes are in 12?"

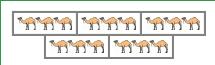
$$12 \div 6 = 2$$

 $6 \times 2 = 12$

"12 divided into 6 groups; how many in each group?"


$$12 \div 6 = 2$$

<u>OR</u>


"How many twos are in 12?"

$$12 \div 2 = 6$$

1. Write a multiplication sentence and two division sentences.

a.

b. _____

c. _____

2. Fact families: write two division and two multiplication sentences.

a. 21 7 and 3

b. 24 4 and

c. 36 4 and

3. Practice a little. Continue the patterns for three more steps.

a. 16 ÷ 2 =	b. 45 ÷ 5 =	c. 90 ÷ 10 =	d. 56 ÷ 7 =
18 ÷ 2 =	40 ÷ 5 =	100 ÷ 10 =	49 ÷ 7 =
20 ÷ 2 =	35 ÷ 5 =	110 ÷ 10 =	42 ÷ 7 =

4. Fill in the tables.

Eggs	6	12	24	36		54		78
Omelets	1				7		11	
Thumbtac	ks 8	24	32	48				
Pictures	1				8	10	12	13

5. Write a number sentence for each situation (It is not always division!). Explain what you find out from your calculation.

a. Three children shared equally 18 marbles. $18 \div 3 = 6$. Each child got 6 marbles.	b. Jim has \$34 and he wants a \$45 book.
c. A fruit store received a shipment of 400 apples in four boxes.	d. Mrs. Davis divided 24 pieces of chocolate equally between 6 persons.
e. Five boxes arrived at the bookstore, each containing 50 books.	f. Mom bought two books that cost \$13 each.
g. A herd of cows had a total of 20 legs.	h. Sixty books were placed on three shelves.

6. Divide.

a.
$$36 \div 4 =$$
 _____ **b.** $54 \div 9 =$ _____

b.
$$54 \div 9 =$$

d.
$$24 \div 3 =$$

$$42 \div 7 =$$

$$64 \div 8 =$$

$$27 \div 9 =$$

$$60 \div 12 =$$

$$60 \div 12 =$$
 $48 \div 6 =$ $72 \div 9 =$

$$72 \div 9 =$$

7. Find what number *x* stands for.

a.
$$64 \div x = 8$$

b.
$$35 \div x = 7$$

c.
$$x \div 5 = 9$$

d.
$$x \div 9 = 6$$

$$\underline{x} = \underline{8}$$

8. For each division, write a multiplication. Then find the value of the unknown.

a.
$$N \div 3 = 10$$

b.
$$x \div 4 = 9$$

$$N =$$

c.
$$60 \div T = 20$$

d.
$$81 \div y = 9$$

$$T =$$

$$v =$$

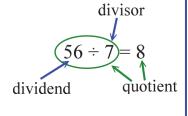
9. Write a number sentence for each situation (It is not always division!). Explain what your answer tells you.

- a. How many books can you buy for \$3 each with \$21?
- **b.** A hundred apples were boxed into 5 boxes.

c. Five boxes of nails cost \$30.

d. A chocolate bar has 8 rows and 5 columns of squares.

e. How many fives are in 45?


f. Each of the five boxes weighs 12 pounds.

Division Terms and Division with Zero

Study the terms in the picture.

Notice: both the expression $56 \div 7$ and its answer are called "the quotient"!

You can call " $56 \div 7$ " the quotient written, and 8 the quotient solved.

1. What is missing from these divisions: the dividend, the divisor, or the quotient? Complete.

a.
$$80 \div ___ = 40$$

b. ____
$$\div$$
 7 = 5

c.
$$120 \div 10 =$$

c.
$$120 \div 10 =$$
 The is missing.

2. Write a division problem. Solve for the unknown.

a. The divisor is 7, the dividend is x, and the quotient is 3. \pm ; $x = \pm$

$$\div$$
 = ; $x =$

b. The dividend is 140, the divisor is y, and the quotient is 7. $\underline{\hspace{1cm}} = \underline{\hspace{1cm}} ; y = \underline{\hspace{1cm}}$

$$\dot{\cdot}$$
 = ; v =

c. The quotient is z, the divisor is 5, and the dividend is 150. ____ = ___ ; z = ____ ;

$$\div$$
 = ; z =

3. Make up:

a. three division problems with a quotient of 6

b. three	division p	roblems v	vith a di	vidend	of 24
			_		

4. Fill in the tables.

Numbers	Product (written)	Product (solved)	Quotient (written)	Quotient (solved)
12 and 3	12 × 3	36		
10 and 5				
20 and 4				
100 and 10				

Chapter 7: Fractions Introduction

In third grade, students have studied equivalent fractions and compared some easy fractions. In fourth grade, it is time to expand their knowledge of fraction topics. We study:

- mixed numbers
- adding and subtracting like fractions and mixed numbers with like fractional parts (sums where the denominators are the same, such as 5/6 + 3/6 or 1 2/3 + 2 1/3)
- equivalent fractions (for example, 2/3 = 8/12)
- comparing fractions
- multiplying a fraction by a whole number (for example $5 \times \frac{1}{2}$)

Then in fifth grade, students tackle *all* four operations with fractions. This chapter is laying groundwork for that. The lessons here are important also because they are the basis for understanding decimal numbers, which is the topic of the next chapter.

In this grade, we continue studying fractions and their operations with the help of visual models. In addition to the visuals in the lessons, you can optionally also use fraction manipulatives, but they are not required.

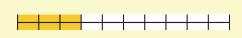
Visual models help children build a strong conceptual understanding of fraction operations. While we do study some actual rules of fraction arithmetic in this chapter, we also want to avoid presenting fraction math as a list of computational rules to be learned by rote memory. If students only memorize these rules, then they will also easily confuse them (eventually), because there are so many of them. The rules become *shortcuts* for ideas that are already understood, but we don't want to start with them. The goal is to let the ideas and concepts "sink in" first, and then study the shortcuts.

A friendly reminder: don't automatically assign all the exercises. As always, use your judgment.

The Lessons in Chapter 7

•	page	span
One Whole and Its Fractional Parts	137	3 pages
Mixed Numbers	140	4 pages
Mixed Numbers and Fractions	144	3 pages
Adding Fractions	147	2 pages
Adding Mixed Numbers	149	3 pages
Equivalent Fractions	152	5 pages
Subtracting Fractions and Mixed Numbers	157	4 pages
Comparing Fractions	161	4 pages
Multiplying Fractions by Whole Numbers	165	3 pages
Practicing With Fractions	168	2 pages
Mixed Review Chapter 7	170	2 pages
Review Chapter 7	172	2 pages

One Whole and Its Fractional Parts

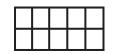

A fraction always relates to some kind of one whole. Study the examples below:

Let's say the one whole is this square. It is divided into 12 parts.

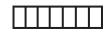
Each part is $\frac{1}{12}$ of the whole. Also, we can write $1 = \frac{12}{12}$.

Maybe the one whole is this line, and $\frac{3}{10}$ of it is colored.

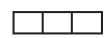
Maybe the one whole is Daddy's salary. To find 5/6 of it, imagine dividing the salary into 6 parts, and taking five of those parts. All six parts form the one whole, or $\frac{6}{6} = 1$


The top number is the **numerator**. It *numerates* or counts *how many pieces* there are. The bottom number is the **denominator**. It *denominates* or *names* what kind of parts they $\overline{12}$ are.

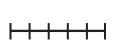
1. Color parts. Write the colored part and the white (uncolored) part as a fraction.


and

and

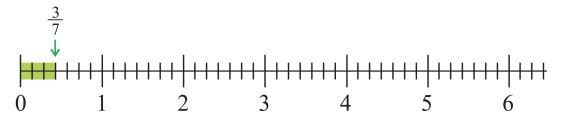

and

and

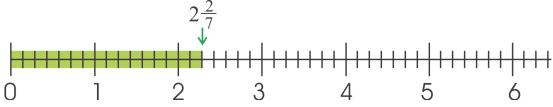

2. Color and write one whole as a fraction.

3. Solve.

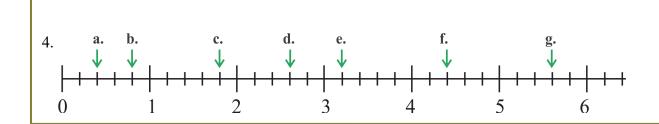
a. The Jacksons ate $\frac{3}{4}$ of the pie.

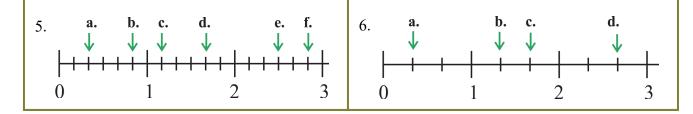

How much is left?

b. Jerry ate $\frac{1}{6}$ of the pizza.


How much is left?

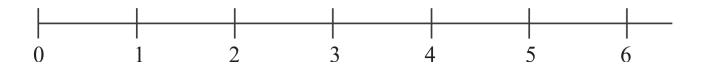
c. Five boys shared a chocolate bar equally. Each one got —— of the bar.


To show 3/7 on a number line, each whole-number interval (from 0 to 1, from 1 to 2, from 2 to 3, and so on) is divided into seven parts. Three of those parts are colored to show 3/7.



In a **mixed number**, we have a whole number and a fraction. The number line below shows 2 2/7 (two and two sevenths).

In problems 4 - 6, write the fractions and mixed numbers that the arrows mark on the number line.



7. Mark the mixed numbers on the number line:

a. 1 2/4 **b.** 3/4 **c.** 4 1/4 **d.** 5 1/2 **e.** 3 1/4 **f.** 2 3/4

Hint: First divide each whole-number interval into four parts (using three tick marks).

