NWSL 12 volt DC PERMAG CAN MOTORS NWSL POWERS THE WORLD

SMOOTH, POWERFUL, QUIET, RUGGED, RELIABLE, EASY TO USE

12270-9/12271-9 repowers NWSL 18 ton Shay Motors are of sealed design and are not internally serviceable. When shorter shaft
 is desired, use cutoff disk in motor tool, secure shaft in vise, keep grindings out of motor bearings.
GENERAL RULE: When uncertain which motor to use, select the largest diameter, longest motor that will fit the space available. This will ususally provide more than adequate power although peculiar construction or shape/size of some models can make it difficult to shoe-horn in a motor of adequate power.

Need Shaft
Adapters?
See page 5-5

What fits? Replaces?

The NWSL part number endeavors to aid you in identifying motors and determining what will fit. If you don't have a metricinch conversion table handy-just remember that 25.4 mm is one inch. Therefore 16 mm is about $5 / 8^{\prime \prime}$ and 30 mm is about $1-1 / 4^{\prime \prime}$.

What size motor?

When uncertain, determine the space available and use the largest diameter, longest motor that will fit the space. This will usually over-power a model unless the design has unusual restrictions. In general the 1630 is appropriate for mid to small size HO but not for HO diesels larger than a switcher. The 2032 is appropriate for mid to large HO and the 2231, 2236 and 2240 for large HO and wide body diesels.

FLYWHEELS

Flywheels provide a momentum or smoothing action to your prime mover (motor) output to provide you with smooth and more reliable operation of your models. The momentum action provides more realistic starts and stops and helps overcome pesky intermittent electrical contact problems. The NWSL Standard Flywheel design has a deep recess to accept universal couplings thereby keeping overall length of the power unit to a minimum. The NWSL Bell Flywheel has been discontinued. Precision machined brass, not cast. Light press fit (to precision shaft of dimension shown) unless indicated otherwise.

Does it have enough power?

Any new installation must be checked for adequate power. Just because the motor will move the locomotive doesn't mean it is appropriate. For best life and suitability, watch the amp draw and compare to the motor specification sheet. If amp draw exceeds maximum continuous rating (or is more than $1 / 3$ rd stall amp draw rating) the motor is probably overloaded and in risk of failure.

Okay I got the motor-How Do I Connect It?

See the \#480-6 thru 499-6 series of precision miniature universal connectors (next page). Choices fitting all commonly found in railroad model shaft sizes.

Diam	Length	Shaft	R1	R2	Pt \#
10mm.390"	7 mm . 276 "	1.0 mm	3 mm	6.3 mm	435-6
10 mm . 390 "	7 mm . 276 "	1.5 mm	3 mm	6.3 mm	400-6
10mm.390"	$7 \mathrm{~mm} /{ }^{\text {276" }}$	1.2 mm	3 mm	6.3 mm	420-6
$11 \mathrm{~mm} / 433$ "	$7 \mathrm{~mm} /{ }^{\text {276" }}$	1.5 mm	3 mm	6.3 mm	408-6
11 mm .433 "	7 mm . 276 "	2.0 mm	5 mm	8 mm	409-6
12mm.472"	$7 \mathrm{~mm} /{ }^{\text {276" }}$	1.5 mm	3 mm	6.3 mm	401-6
12mm.472"	7 mm . 276 "	1.2 mm	3 mm	6.3 mm	421-6
$12 \mathrm{~mm} .472^{\prime \prime}$	9mm.354"	1.5 mm	3 mm	6.3 mm	424-6
12mm.472"	11mm.433"	1.5 mm	3 mm	6.3 mm	425-6
16 mm .630 "	9mm.354"	2.0 mm	4 mm	8 mm	402-6
16mm.630"	9mm.354"	2.0 mm slip	4-5/32"	6.3 mm . 250 "	432-6
16 mm .630 "	9 mm . 354 "	1.5 mm	4 mm	6.3 mm	422-6
$16 \mathrm{~mm} / 630$ "	11mm/433"	2.0 mm	4 mm	6.3 mm	407-6
16 mm . 630 "	$11 \mathrm{~mm} / 433$ "	1.5 mm	4 mm	6.3 mm	423-6
$17 \mathrm{~mm} / 669$ "	$11 \mathrm{~mm} / 433$ "	2.0 mm	5 mm	8 mm	405-6
18mm. 708 "	11mm.433"	2.0 mm	5 mm	8 mm	406-6
18mm.709"	11 mm .433 "	2.4 mm	5 mm	8 mm	403-6
25mm.984"	$11 \mathrm{~mm} / 433$ "	2.4 mm	5 mm	8 mm	404-6
25mm.984"	$13 \mathrm{~mm} / 51^{\prime \prime}$	1/8"	7 mm . 276 "	$9.5 \mathrm{~mm} / 3 / 8$ "	411-6
$28 \mathrm{~mm} / 1.1$ "	$13 \mathrm{~mm} / \mathrm{S1}^{\prime \prime}$	5/32"	7 mm . 276 "	$9.5 \mathrm{~mm} / 3 / 8$ "	415-6
28mm/1.1"	13 mm .51 "	3.0 mm			433-6
$31 \mathrm{~mm} / 1.25$ "	$16 \mathrm{~mm} / 630$ "	5/32"	7mm/ 276	9.5mm/3/8"	417-6
$31 \mathrm{~mm} / 1.25^{\prime \prime}$	$16 \mathrm{~mm} / 630$ "	3.0 mm			434-6
$38 \mathrm{~mm} / 1.5$ "	13 mm . 51 "	1/8"	7 mm . 276 "	$9.5 \mathrm{~mm} / 3 / 8$ "	412-6
$38 \mathrm{~mm} / 1.5$ "	13 mm . 51 "	5/32"	7 mm . 276 "	$9.5 \mathrm{~mm} / 3 / 8$ "	416-6

BUSHING (REDUCER, SHAFT ADAPTER)

A bushing is used to adapt one size shaft (or axle) to a larger size hole (or shaft) for coupling purposes or otherwise. Some modelers refer to them as 'reducers'. A bushing can also be used as mechanical shaft connectors HOWEVER this requires perfect alignment of the connected shafts for satisfactory operation, such alignment can rarely be successfully accomplished or maintained. Bushings can sometimes be used as bearings, but must be reamed to proper final bore - this is an emergency solution at best. Because the use of bushings can result in tolerance buildup and eccentricity in a mechanism, NWSL has worked to alleviate their necessity by developing a line of universal couplings which can fit (and couple) virtually any shaft size found in small scale models - see the \#480-6 series Universal Couplings. The tolerance buildup and thus eccentricity can be particularly troublesome if bushings are used to mount flywheels (which require concentricity as close to perfect as possible for satisfactory smooth operation). Therefore, NWSL discourages use of bushings but makes this limited selection available to help save those 'impossible' model building situations

$\underline{\mathbf{I D}}$	$\underline{\text { OD }}$	$\underline{\text { Length }}$	$\underline{\text { Material }}$	$\underline{\text { Qty }}$	$\underline{\text { Part \# }}$	
1.0 mm	1.5 mm	3.0 mm	steel	2	$10170-9$	
1.0 mm	2.0 mm	3.0 mm	brass	2	$10171-9$	
1.0 mm	2.4 mm	3.0 mm	steel	2	$10165-9$	
1.2 mm	$1.5 \mathrm{~mm} \mathrm{~m}^{*}$	2.5 mm	steel	2	$10160-9$	
1.2 mm	2.0 mm	1.6 mm	brass	2	$10158-9$	
1.2 mm	2.4 mm	1.6 mm	brass	2	$10157-9$	
1.5 mm	2.0 mm	3.0 mm	brass	2	$10161-9$	
1.5 mm	2.4 mm	3.0 mm	steel	2	$10164-9$	
2.0 mm	$1 / 8 "$	4.75 mm	brass	2	$10166-9$	
2.0 mm	2.4 mm	3.0 mm	brass	2	$10159-9$	
2.0 mm	2.4 mm	3.0 mm	steel	2	$10169-9$	
2.4 mm	$1 / 8 "$	5.75 mm	steel	2	$10162-9$	
*Adapter style, not bushing						

WHADDYA WANNA CONNECT?

QUICK, PRECISION, EASY TO USE SHAFT COUPLINGS DRIVELINE UNIVERSALS

You've got the motor in place, the gearbox is installed, but how do you connect them. You could use a piece of flexible tubing, but is it really flexible enough? or does it cause binding and friction? and will it slip under heavy load? or will it stiffen with age? or is it too flexible and whips causing a lockup or gallop? NWSL precision universal couplings are designe ${ }^{3}$ and precision moulded of engineering acetal plastic to provide you with the most accurate, concentric, efficient power connections available for miniature mechanisms. The press-fits make them extremely easy to use, the size choices and combinations permit you to fit virtually any size you'll encounter, the engineering plastic allows you to tap and drill them like metal if you prefer
 or require set screws and the self-lubrication quality of the acetal allows you to install them and forget them (but lubrication will extend their life by a factor of $10 \ldots$ which must be a very long time because we've never had one wear out un-lubricated!)

	"Dog Bone"					Couples these shaft sizes															M inimum	
		Ball Diameter **				Cup (Socket) fits this shaft diameter									Horned Ball ID						Length	Comment
Part \#	2.0	3/16"	1/8"	3/32"	1/4"	1.0	1.2	1.5	2.0	2.4	3.0	3/16"	1/8"	5/32"	1.0	1.5	2.0	2.4	3/16"	1/8"	inch-mm	
475-6		X										2							D		1.1-28	
476-6		D										2							D		$1.1-28$	
479-6	X							2	2						4						0.37-9	
478-6		X											2				2				0.7-18	
480-6		X											2					2			0.7-18	
481-6		X								2								2			0.7-18	
482-6			X					1	2	1							4				0.55-14	
483-6				X				2	1	1						D					0.37-9	
484-6			X							4							4				0.55-14	
485-6				X			2	1	1							D (4)					0.37-9	
486-6		X									2							2			0.7-18	
487-6				X				4								D					0.37-9	
488-6			X						2	2							4				0.55-14	
493-6				X				2	2							D					0.55-14	
494-6				X					4							D						
489-6			X						4								4				0.55-14	
490-6		X								4								2		N/A	1.7-18	Inte gral S tyle
491-6		X							2	2								2		N/A	1.7-18	Integral S tyle
492-6		X							4									2		N/A	1.7-18	Integral S tyle
495-6					X								1-D	1-D						D	$1.1-28$	
496-6					X						1-D			1-D						D	1.1-28	
497-6					X					1-D				1-D						D	1.1-28	
498-6					X					1-D			1-D							D	$1.1-28$	
499-6					X					2-D								D			$1.1-28$	

The size fits are press-fit to shafts of the size indicated in mm (millimeters) or fractional inch sizes. (*2.4mm fits can usually be successfully used on $3 / 32$ " shafting). Heavy loading and/or undersize/under-specification shafting may allow the press-fit to slip. In this situation, knurl or upset the shaft press-fit area

HOW FAST DOES YOUR MODEL RUN?

A QUICK, SIMP LE SPEED CHECK METHOD WITHOUT EXPENSIVE EQUIPMENT.

Is that model fast or just half fast? This method enables you to accurately determine the scale speed of your models 1 with no new expenses, you use equipment you already have. All you need is a length of track - preferably straight, your power supply, your model, and a stop watch or watch allowing you to measure seconds of time it takes your model to travel a specific distance.
Set up a measured distanœ on your trackage so you can accurately note the begin and end of the test run. It is easiest if your test track length is a multiple of the distance indicated in the chart below. The longer the distance, the more accurate result and easier it is to time the run. However, even a 3 foot run can pemit a reasonably accurate measurement.

Scale	Gate*
N (160.1)	6-3/4"
HO (87:1)	$12^{\prime \prime}$
S (64:1)	16-1/2"
O (48:1)	22"

*'Gate' is the distance traveled in one
second at the rate of 60 MPH

If you have a 5 foot test track in HO (above illustration with five Gates), divide the length by the above travel 'gate' length $\left(5^{\prime} / 12^{\prime \prime}=5\right)$ and that is the number ofseconds that will equal 60 SMPH (it is easiest if you use exact multiples of the above figures). Assuming T=number of seconds for your test track (ie. if your HO scale test track is 5^{\prime} ($60^{\prime \prime}$), T would be 5 seconds - $(T=60 / 12=5)$, use S to represent your measured time to travel the test track distance. Then, assuming a test run of 12 seconds:

T/S x60=Scale MPH
Example: HO scale, 5 foot test track ($\mathrm{T}=5$), 12 second test run ($\mathrm{S}=12$): $5 / 12 \times 60=.417 \times 60=25 \mathrm{smph}$
or install a setscrew in the cup shank (these are molded of engineering grade acetal plastic and can be drilled and tapped - although we find tapping unnecessary, just drill tap drill size and let the setscrew self-tap). The bores in the horned balls marked ' D ' are ' D ' shaped to better assure grip; you must file or grind a matching flat on the shaft file or
to fit. ${ }^{* *}$ Components of coupling sets with the same ball diameter can be interchanged to enable connecting different shaft sizes ("Cup" socket). Ball size determines load capacity - the smaller the ball size, the lower the load capacity of the set.

Need Shafting?
See page 5-6

SELECT-A-SPEED

USE THESE "SELECT-A-SPEED" GRAPHS TO DETERMINE

REDUCTIONRATIOS-MOTOR SPEED-SCALE SPEEDS-DRIVER RPM

Graph 1

Graph 2

To find needed motor RPM or ratio:

1. On graph I, knowing wheel diameter and desired speed, determine the required wheel RPM
2. With axie RPM from graph I above;
a. determine needed motor speed ifyou know gearbox ratio
b. determine required reduction ratio if you know motor speed.

REPOWER KITS

Athearn, ROCO, etc Diesel Locomotives

Want smooth, powerful operation for your diesels, especially the now-discontinued Athearn "Blue Box" diesel locomotives? NWSL's repower kits are the answer, and they're DCC ready if you need it.

These repower kits come with pre-installed flywheels, pre-soldered motor leads, plus U-joints and NWSL's Qwik Mount mounting material. You remove the factory motor and driveshafts, install the repower kit, test the unit, then secure the motor to the chassis using the "silicone sealant" method described in the instructions (included with kit).

The NWSL repower kit comes in four versions and all use the same motor, the NWSL 2032D-9. The four configurations allow for different types of engines. Standard width and length engines, such as the F7, PA, FP40, etc. have enough length to allow for two flywheels and enough width for an $18 \mathrm{~mm}\left(0.714^{\prime \prime}\right)$ diameter flywheel. Standard width but narrow body units, such as SD40, GP7, GE-8, SD90, etc. have less room to work with, so the motor is fitted with two $16 \mathrm{~mm}\left(0.630{ }^{\prime \prime}\right)$ flywheels and you install the motor on edge to fit. We also have two versions for switchers and other short locomotives; these have only one flywheel due to length restrictions inside the engine. This shorter version is also available in both a narrow and wide flywheel to accommodate for different widths.

Which one do you need? Pop off the shell and measure! Check the width of the shell cavity. If it's $21 \mathrm{~mm}(0.826$ ") or wider, go with the standard width version. Narrower? Go with the narrow version. Next, check length. If your model already has two flywheels, go with the longer version of the repower kit. Not sure? Measure how much length you have to work with, then refer to the images below. The NWSL repower kits are a bit more compact than the factory power plants they replace; note also that the flywheels are pressed on and can be moved a bit if need be. The motor shafts are supplied full length; if need be these can be trimmed back to provide more room. The NWSL driveshafts are adjustable and can be made to fit whatever configuration you come up with. See tutorials at www.nwsl.com

Repower kit 163-4 installed in an Athearn wide body diesel

Wide Diesels, Switchers, etc.

162-4 Re-power KIT w/2032 motor, one flywheel
163-4 Re-power KIT w/2032 motor, two flywheels

162-4 motor measurements

163-4 motor measurements

Narrow Diesels, Switchers, etc.

1162-4 , Re-power KIT w/2032 motor, one flywheel 1163-4 Re-power KIT w/2032 motor, two flywheels

1162-4 motor measurements

1163-4 motor measurements

Repower kit 1163-4 installed in an Athearn narrow body diesel

2032D-9 Motor body dimensions

\#1170-4 HO Varney Dockside

Kit includes:
(1) 16×30 motor (\#1630D-9)
(1pc) Quick-Mount (\#199-6)
(1) Worm (\#30402-6)
(1) Wire, 12 in. (\#10010-9)
(1) Gear (\#2451-6)
(4) Wire Tab, bronze (\#120-4)

Instructions

\#1172-4 Tyco/Mantua 0-6-0, 4-6-0

Kit includes:
(1) Motor, \#1630D-9
(1) Quik-Mount, \#199-6 (1")
(1) Worm, \#50400-6
(1) Wire, \#10010-9 (6")
(1) Gear $0.4 \times 30 \mathrm{~T}$ WG, \#2284-6
(1) Tab, \# 120-4
\#1174-4 Tyco/Mantua 2-8-2 or 4-6-2
Kit includes:
(1) Motor, \#1630D-9
(1) Quik-Mount, \#199-6 (1")
(1) Worm, \#50400-6
(1) Wire, \#10010-9 (6")
(1) Gear $0.4 \times 38 \mathrm{~T}$ WG, \#2276-6
(1) Tab, \# 120-4

The STANTON DRIVE

NWSL's new DCC-ready, self-contained underfloor power unit. Re-power that old diesel and open up the interior, or build a critter and have some fun!

Easy installation. As shown above, all you need is a 4 mm (.157") hole in the chassis and the Stanton drive bolts right in. The included instructions show how to make retro-fitting a Stanton drive into a variety of engines. We've included a coupler pocket if you want a truck-mounted coupler. If not, just cut off the pocket. The Stanton drive comes pre-assembled and tested with your choice of wheels and axles...with everything we make, there are over 1,000 possible combinations.

A new way to plug and play. The Stanton drive replaces NWSL's classic PDT drive unit, which we're no longer able to make. What's new? Plenty! Four color coded wires for direct hookup to a DCC decoder (comes wired for immediate DC operation.) Self-resetting fuse for power spike protection. Four individually adjustable bearings allow you to fine-tune the mesh between the worms and the axle worm gears. Just add sideframes if desired and off it goes!

Individually adjustable bearings. As you can

 see in this (literal!) cutaway view, each axle is held by two heavy duty bearings, each of which is adjustable if you need to fine tune. All units ship with these bearings adjusted and ready to go.Three models create a wide range of wheelbases. The Stanton Drive comes in with three motor choices: 12×20 (model 1220), 12×15 (model 1215), and 12×10 (model 1210). The difference is wheelbase. Model 1220 has HO wheelbase choice of $9^{\prime}-0^{\prime \prime}, 9^{\prime}-6^{\prime \prime}$, or $10^{\prime}-0^{\prime \prime}$. Model 1215 has HO wheelbase of $7^{\prime}-6^{\prime \prime}, 8^{\prime}-0^{\prime \prime}$, or $8^{\prime}-6^{\prime \prime}$. Model 1210 has HO wheelbase of $6^{\prime}-6^{\prime \prime}$ or $7^{\prime} 00^{\prime \prime}$, which is as small as we can go with this design. Our standard versions will have $38^{\prime \prime}, 40^{\prime \prime}$, or $42^{\prime \prime}$ wheels with $/ 110$ tread ($.110^{\prime \prime}$ wide) on $2.0 \mathrm{~mm} \times .797$ flush axle. If you prefer a different wheel diameter/ tread we can do that, just let us know.

Just add sideframes! NWSL does not manufacture sideframes, so simply salvage the sideframes from your current engine and attach them to the Stanton drive. The rigid plastic body is made from ABS, allowing you to glue, drill and tap, or otherwise attach what you've got. Illustrated here is an Athearn sideframe on a Stanton drive model 1220 with a $9^{\prime}-0 \prime \prime$ wheelbase. Or, purchase sideframes from one of several sources.

Do the math. Although designed for HO standard gauge,
 by using larger wheels we can make these for On30 or On3, S standard, and so on. Convert the HO wheelbases offered above to your desired scale and just tell us what wheels and axles you need. There are practical limits, but we can do a lot with these. And more. On the heels of these will be other versions of the Stanton drive, including a $13^{\prime}-3^{\prime \prime}$ wheelbase version to repower the Athearn Hustler, as well as a three axle unit in a wide variety of wheelbases.

STANTON DRIVE
 HO scale

How to measure

The wheelbase of a truck is the distance from axle center to axle center. This can be difficult to measure on some models, so a quick and easy way to measure the wheelbase of your truck is to measure from the journal box center to journal box center, as shown here:

Wheel		
base (HO)	Inches	Millimeters
6'-6"	0.897	22.784
7'-0'	0.966	24.536
7'-6"	1.035	26.289
8'-0"	1.104	28.042
8'-6"	1.173	29.794
9'-0"	1.242	31.547
9'-6"	1.311	33.299
10'-0"	1.380	35.052

Stanton drive model 1210 Stanton drive model 1210 Stanton drive model 1215 Stanton drive model 1215 Stanton drive model 1215 Stanton drive model 1220
Stanton drive model 1220
Stanton drive model 1220

To measure the wheel diameter, measure the wheel across the widest part of the face, excluding the flange, as shown here:

Wheel

Diam. (HO)		Inches	
		Millimeters	
45	0.517		13.132
42	0.483		12.268
40	0.460		11.684
38	0.437		11.100
36	0.414		10.516
33	0.380		9.639
30	0.345		8.763 (too small for Stanton design)
28	0.322		8.179 (too small for Stanton design)
26	0.2997		7.595 (too small for Stanton design)

To measure the wheel tread (thickness) measure across the entire wheel, flange and all, as shown here. The /110 tread shown here is standard and is the default for virtually all manufacturer's locomotives (although tolerances may vary.) Stanton drives are available with /110 tread (which would be appropriate here) or $/ 88$ tread (0.088 " wide, known as semi-fine scale) or $/ 64$ tread ($0.064^{\prime \prime}$ wide, known as fine scale.) Not sure? Order /110 tread. Narrower wheels look more prototypical, but may de-rail more because of *any* glitch in your trackwork, especially switches.

STANTON DRIVE
 HO Scale / Gauge

Powered \$ 84.95
Dummy Drive (no motor) \$44.95
(add a "D" to the end of the part number for non-powered version, i.e.39282D-9)

HO GAUGE (wheelbases are listed in HO scale)

Model 1220				
Part \#	W B	Wheel		Gauge
39282-4	$9{ }^{\prime}$	33	1110	HO
39228-4	$9{ }^{\prime} 0$	36	1110	HO
39200-4	$9{ }^{\prime} 0$	38	/110	HO
39201-4	$9{ }^{\prime} 0$	40	/110	HO
39202-4	$9{ }^{\prime} 0$	42	/110	HO
39283-4	$9{ }^{\prime} 0$	33	188	HO
39284-4	9 '0	36	188	H O
39215-4	$9{ }^{\prime} 0$	38	188	HO
39216-4	$9{ }^{\prime} 0$	40	188	HO
39217-4	$9{ }^{\prime} 0$	42	188	HO
39221-4	$9{ }^{\prime} 0$	38	164	HO
39222-4	$9{ }^{\prime} 0$	40	164	HO
39223-4	$9{ }^{\prime} 0$	42	164	HO
39285-4	9'6"	33	1110	HO
39286-4	9'6"	36	1110	HO
39210-4	9'6"	38	1110	HO
39213-4	9'6"	40	1110	HO
39211-4	9'6"	42	/110	HO
39287-4	$9{ }^{\prime 6}$	33	188	HO
39288-4	9'6"	36	188	HO
39203-4	$9{ }^{\prime 6}$	38	/88	HO
39204-4	9'6"	40	188	HO
39205-4	9'6"	42	188	HO
39224-4	9'6"	38	164	HO
39225-4	9'6"	40	164	HO
39226-4	9'6"	42	164	HO
39289-4	$10^{\prime \prime} 0^{\prime \prime}$	33	1110	HO
39227-4	$10^{\prime \prime} 0^{\prime \prime}$	36	1110	HO
39214-4	$10^{\prime \prime} 0^{\prime \prime}$	38	1110	HO
39209-4	$10^{\prime \prime}{ }^{\prime \prime}$	40	1110	HO
39212-4	$10^{\prime \prime} 0^{\prime \prime}$	42	1110	HO
39290-4	$10^{\prime \prime}{ }^{\prime \prime}$	33	188	HO
39291-4	$10^{\prime \prime}{ }^{\prime \prime}$	36	188	HO
39218-4	$10^{\prime \prime}{ }^{\prime \prime}$	38	188	HO
39219-4	$10^{\prime \prime} 0^{\prime \prime}$	40	188	HO
39220-4	$10^{\prime \prime} 0^{\prime \prime}$	42	188	HO
39206-4	$10^{\prime \prime} 0^{\prime \prime}$	38	164	HO
39207-4	$10^{\prime \prime} 0^{\prime \prime}$	40	164	HO
39208-4	$10^{\prime \prime}{ }^{\prime \prime}$	42	164	HO

Model 1215				
Part \#	WB	Wheel		Gauge
39292-4	7'6"	33	/110	HO
39293-4	7'6"	36	/110	HO
39229-4	7'6"	38	/110	HO
39230-4	7'6"	40	/110	HO
39231-4	7'6"	42	1110	HO
39294-4	7'6"	33	188	HO
39295-4	7'6"	36	188	HO
39238-4	7'6"	38	188	HO
39239-4	7'6"	40	188	HO
39240-4	7'6"	42	188	HO
39247-4	7'6"	38	164	HO
39248-4	7'6"	40	164	HO
39249-4	7'6"	42	164	HO
39296-4	8'0"	33	1110	HO
39297-4	8'0"	36	/110	HO
39232-4	8'0"	38	/110	HO
39233-4	8'0"	40	1110	HO
39234-4	8'0"	42	1110	HO
39303-4	8'0"	33	188	HO
39304-4	8'0"	36	188	HO
39241-4	8'0"	38	188	HO
39242-4	8'0"	40	188	HO
39243-4	8'0"	42	188	HO
39250-4	$8^{\prime \prime}{ }^{\prime \prime}$	38	164	HO
39251-4	8'0"	40	164	HO
39252-4	8'0"	42	164	HO
39298-4	8'6"	33	1110	HO
39299-4	8'6"	36	1110	HO
39235-4	8'6"	38	1110	HO
39236-4	8'6"	40	1110	HO
39237-4	8'6"	42	1110	HO
39300-4	8'6"	33	188	HO
39301-4	8'6"	36	188	HO
39244-4	8'6"	38	188	HO
39245-4	8'6"	40	188	HO
39246-4	8'6"	42	188	HO
39302-4	8'6"	36	164	HO
39253-4	8'6"	38	164	HO
39254-4	8'6"	40	164	HO
39255-4	8'6"	42	164	HO

STANTON DRIVE
 P:87, On30, On3 Gauge
 Powered \$ 84.95 / Dummy \$44.95

(add a " D " to the end of the part number for non-powered version, i.e.39282D-9)
P:87 GAUGE (wheelbases are listed in HO scale)

STANTON DRIVE S scale

How to measure

The wheelbase of a truck is the distance from axle center to axle center. This can be difficult to measure on some models, so a quick and easy way to measure the wheelbase of your truck is to measure from the journal box center to journal box center, as shown here:

To measure the wheel diameter, measure the wheel across the widest part of the face, excluding the flange, as shown left:

Wheel
Diam. (S) Inches Millimeters

40	0.624	15.875
36	0.561	14.288
33	0.515	13.097

S STANTON DRIVE

Powered \$89.95

Dummy Drive (no motor) \$49.95

$\begin{gathered} \text { S Scale } \\ \text { W B } \end{gathered}$	Wheel Dia	Wheel Tread	Gauge	Powered Part \#	Dum my Part \#
$8{ }^{\prime \prime}$	33	1110	S	40200-4	40200D-4
$8^{\prime \prime} 0$	36	1110	S	40201-4	40201D-4
8'0"	40	1110	S	40202-4	40202D-4
$8{ }^{\prime \prime}$	33	187	S	40203-4	40203D-4
8'0"	36	187	S	40204-4	40204D-4
8'0"	40	187	S	40205-4	40205D-4
8'6"	33	1110	S	40220-4	40220D-4
8'6"	36	1110	S	40221-4	40221D-4
8'6"	40	1110	S	40222-4	40222D-4
$8^{\prime \prime}{ }^{\prime \prime}$	33	187	S	40223-4	40223D-4
8'6"	36	187	S	40224-4	40224D-4
8'6"	40	187	S	40225-4	40225D-4
9'0"	33	1110	S	40230-4	40230D-4
$9{ }^{\prime \prime}$	36	1110	S	40231-4	40231D-4
9'0"	40	1110	S	40232-4	40232D-4
$9^{\prime \prime}{ }^{\prime \prime}$	33	187	S	40233-4	40233D-4
$9{ }^{\prime \prime}$	36	187	S	40234-4	40234D-4
9'0"	40	187	S	40235-4	40235D-4

To measure the wheel tread (thickness) measure across the entire wheel, flange and all, as shown above. The /110 tread shown here is standard and is the default for virtually all manufacturer's locomotives (although tolerances may vary.) Stanton drives are available with /110 tread (which would be appropriate here) or $/ 87$ tread (0.087 " wide, known as semi-fine scale).) Not sure? Order /110 tread. Narrower wheels look more prototypical, but may de-rail more because of *any* glitch in your trackwork, especially switches.

STANTON DRIVE 0 scale

How to measure

The wheelbase of a truck is the distance from axle center to axle center. This can be difficult to measure on some models, so a quick and easy way to measure the wheelbase of your truck is to measure from the journal box center to journal box center, as shown here:

To measure the wheel diameter, measure the wheel across the widest part of the face, excluding the flange, as shown left:

Wheel
Diam. (O) Inches Millimeters

42	0.88	22.350
40	0.83	21.082
36	0.75	19.049
33	0.69	17.520

To measure the wheel tread (thickness) measure across the entire wheel, flange and all, as shown above. The /175 tread shown here is on manufacturer's example (although tolerances may vary, and some wheels can be as wide as 220.) Stanton drives are available with /172 tread (which would be appropriate here) or /145 tread (semi-fine scale) or /115 tread (fine scale). Not sure? Order /172 tread. Narrower wheels look more prototypical, but may de-rail more because of *any* glitch in your trackwork, especially switches.

O STANTON DRIVE

Powered S 94.95

Dummy Drive (no motor) \$ 64.95

The Stanton Radio CAB
 Visit www.s-cab.com for complete information and ordering

Inside the model is a decoder, a radio receiver and its antenna. In your hand is a wireless controller (the S-CAB) which communicated directly with the model's radio receiver. With these two products you control your model using DCC commands while avoiding any layout re-wiring or base stations, or enjoy the benefit of battery power and eliminate track wiring. Except for loco decoders, no DCC equipment to buy or install. With one CAB , run as many as 15 locos during and operating session. Control headlights, interior lighting and other loco functions. Choose a suitable decoder and control a selection of loco sounds; bells, whistles, chuff, brakes; whatever the decoder supports.

What is the Stanton CAB?

The Stanton Radio CAB (S-CAB) is a hand-held wireless controller that allows a user to operate up to 15 locomotives equipped with a radio receiver-decoder. The hand-held controller is battery powered and is designed for one-handed operation. It
 communicates with locos via radio, not through track signals, meaning no base station is needed and no changes to layout wiring are required (be it DC or DCC). If you're tired of fighting dirty track and power glitches, convert your loco to on-board battery power-the S-CAB system is already prepared for that. The battery power supply (available separately) uses a single 3.7 V cell to deliver a constant 12 VDC , including real-time battery charging if track power is either sporadically or continuously available. Convenient battery power in minimum space.

The S-CAB is supplied as a package which included one loco receiver/decoder, the hand-held controller, a USB cable (to charge the controller's battery when needed), and a user's guide. Additional loco receivers are available separately, and can be supplied for use with battery or track power. S-CAB loco control is compliant with NMRA standards, and you choose the decoder you want when you order your system (so far NCE decoder; economical, great control, without sound or Tsunami decoder if you want sound in the loco).

Pictured at right is the receiver, that is banded to the radio receiver and DCC decoder (NCE in this photo) with added antenna. Select a location in the model, mount the receiver-decoder, connect battery or track power, wire connections for motor, lights, speaker, etc., and that's it. Switch on the S-CAB, assign the model a 1 or 2digit identifier (loco address; standard DCC stuff) and your ready to operate.

Have fun running trains with the benefit of DCC, but without its complexity, at an affordable price. Add receivers to locos as you need them. Scale is irrelevant to the S-CAB; everything from HO to G is at your control - you do need to choose the appropriate decoder and be sure to plan for the power requirements of larger motors.

> The S-CAB communicates by radio, not wires, making it wireless, simple, straightforward, affordable and fun!

Visit www.s-cab.com for complete information and ordering

The FLEA

FLEA Geared Drive Units

See part nos. next page

1) Choose wheelsize
2) Choose axle style
3) Choose motor size

Individual wheelsets available for FLEAs and auxilliary gearbox, $\$ 7.95$ ($\mathbf{1} / \mathbf{p k g}$) -- see part nos. under "Addt'l geared wheelsets" next page

Individual mathcing wheelsets available ungeared $\$ 12.95$ (4/pkg) -- see part nos. under "Matching ungeared wheelsets" next page
A miniature motorizing unit for powering small railroad models, ship capstan of elevators and other miniature devices. With interchangeable wheelset (see listing below) or custom made whasl. can used to gower small models from HOn30 gauge to On3; use the output shaft (\#2023-6) for your special proj O or gear your own 3/32" shaft using the \#31015-6 ge A SO
precision motor provides speed range froms
 IMPORTANT: Proper gear U. Bit IS per fo better operaticn an onger component life, gearbox (bearing area) lubrication is recommended for long life. Qualit
operation that your fine models de erv. The driven wheelset is easily intercharear just loosen two screws and replace the wheelset with any desired FLEA III wheelset or $3 / 32^{\prime \prime}$ output shaft. Other whee (gauge, wheel size) can be ordered for custom assembly.

The FLEA is a single axle basic drive unit, however, additional axles can be driven from the shaft protruding from the bottom gearbox by hooking up an Auxiliary gearbox (\#207-6) using NWSL universal couplings (\#483-6 or \#487-6). The Auxiliary gearbox (\#207-6) can also be used independently as a miniature 15:1 ratio gearbox. Motor shafts are long (17 mm) so that you can choose where and if you wish to use a flywheel (NWSL \#420-6 or \#421-6). Unwanted shaft length
 should be removed carefully using a cutoff wheel in a hand motor tool (protect bearings and eyes from grindings intrusion).

Tractive effort and electrical contact reliability are heavily dependent on clean track and model weight as with any powered model drive. Wheelsets are provided with outside bearing (shouldered) journals for $1 / 16^{\prime \prime}$ sideframe bearings. Supporting the model weight on these bearings will provide substantially longer gearbox life than using the gearbox to support the model weight. Electrical pickup is via wheel wipers; additional pickup from other wheels of your finished model will result in more reliable operation.

Individually available wheelsets for FLEAs and auxilliary gearbox:

			GEARED $\$ 7.95(1 / \mathbf{k g})$
HO	$33^{\prime \prime} / 110$	shouldered axle	$2001-6$
HO	$36^{\prime \prime} / 110$	shouldered axle	$2002-6$
HO	$40^{\prime \prime} / 110$	shouldered axle	$2003-6$
HO	$42^{\prime \prime} / 110$	shouldered axle	$2004-6$
HO	$26^{\prime \prime} / 110$	shouldered axle	$2005-6$
HO	$26^{\prime \prime} / 88$	shouldered axle	$2008-6$
HO	$33^{\prime \prime} / 88$	shouldered axle	$2009-6$
HO	$36 " / 88$	shouldered axle	$2010-6$
On2	$20 " / 110$	shouldered axle	$2015-6$
Sn3	$24 " / 88$	shouldered axle	$2016-6$
Sn3	$26 " / 88$	shouldered axle	$2017-6$
HOn3	$26 " / 88$	shouldered axle	$2018-6$
HOn3	$26^{\prime \prime} / 88$	flush axle	$2019-6$
HOn3	$30 " / 88$	shouldered axle	$2020-6$
On3	$26 " / 110$	flush axle	$2021-6$
On3	$26 " / 110$	shouldered axle	$2022-6$

UNGEARED
\$12.95 (4/pkg)
37107-4
37108-4
37131-4
37132-4
37103-4
37203-4
37207-4
37208-4
37851-4
37791-4
37790-4
37303-4
37323-4
37306-4
37823-4
37803-4

206-6 shown with 9-spoke wheels and 10253-9 motor

Component Parts:

2023-6 \$6.95 axle and gear (no wheels) 3/32" diameter x $1.015^{\prime \prime}$ length
31015-6 $\$ 6.00$ axle gear only, $3 / 32^{\prime \prime}$ bore, 15 tooth
221-6 \$29.95 25-1 Transfer GEARBOX, 1.5 mm shafts
207-6 $\$ 8.50$ Auxiliary gearbox, $15: 1$ ratio, no axle (see page 51 also)

Need different specifications? Give us a call!

For Powering: STREETCARS, INTERURBANS, RAILCARS, SPEEDERS, DIESEL LOCOMOTIVES, etc.

EASYTOINSTALL

- Just like installing a plain wheelset in a truck
- Completely underfloor within the truck,
- Easy power truck exchange between cars
- Leaves car floor intact enabling interior detail, if desired.
- Allows complete interior detailing - even in diesel locomotives.

VERSATILE Most any wheelbase, any sideframes, complete flexibility of operation with truck swing limited only by wiring. Fits almost any truck that a plain wheelset will! Allows power trucks to be sprung or equalized just like the prototype for better tracking and traction. Power one axle, two or all as appropriate for your power requirements, how the prototype was powered, etc. NWSL recommends all axles be powered on a locomotive, at least 2 axles on an interurban. Makes powering maximum traction trucks a snap. Because everything to provide power is completely within the truck, you can quickly interchange power trucks from one model to another just like the prototype - gives you 'many' powered cars from one (or a few) power truck(s). Wire unpowered cars with a plug (not included) or on 2 rail, you can just depend on truck mounted pickup wipers (you supply) without car wiring if desired.

POWERFUL FOR ITS SIZE A heavy interurban or gas-electric with two axles powered can pull several trailers or freight cars (depending on grades and curves) just like the prototype. A car or locomotive with 4 axles powered will pull 15 to 20 cars, fewer on grades or very sharp curves. A streetcar may be powered on just one axle, but two powered axle will provide more reliable operation (less wheel slip problem).

PROTOTYPICAL The real streetcars, diesel-electric locomotives, etc. are driven by motors mounted to the wheelset axle and geared to a large wheel gear. They are spring mount attached to the truck frame and are called 'nose-hung'. The size, shape, mounting and gearing of the Super Magic Carpet is very similar to these 'nose-hung' design prototype electric motor units used for over 100 years on streetcars, interurbans, electric locomotives and diesel-electric locomotives. Speed range (no load) is 0-40 SMPH (scale miles per hour) for switcher, 0-60 SMPH for freight and $0-80$ SMPH for passenger.

POWER REQUIREMENT DC only, 12 volt, 0.2 to 0.5 amp per unit.Not for AC operation. Units can be wired in series or parallel to suit your requirements (NWSL recommends parallel wiring). Series provides slower speeds approximately one half that of parallel as well as protection against excess voltage but requires closely matched units for reliable coincident starting. Operates on any 12 volt DC power pack; exceeding 12 volts is not recommended.

CHOICE OF WHEEL SIZES and TREADS NWSL manufactures 4 tread widths suitable for'O' scale modeling in wheel diameters ranging from 22 " (minimum size for Magic Carpets is $26 "$ ') to 40 " on $1 / 8^{\prime \prime}$ axle. The traditional ' O ' wheel tread is known as NMRA / 172 (but generally referred to as $/ 172$) width wheel. The NWSL/ 145 tread wheel provides better looking models with fewer modeling compromises found with excess width / 172 wheels interfering with truck or underbody detailing, while retaining satisfactory tracking on track laid to NMRA gauging standards. The NWSL/ 135 tread is commonly used in traction modeling while the $/ 115$ tread (P:48) tread is used for finescale modeling. Caution - the latter two treads will not operate reliably on common ' O ' gauge trackage.

RELIABLE Designed for long life and smooth, quiet operation. Gearhead motor with nitrogen hardened steel gears and precision manufactured NWSL gears and wheels assure fine operation. Weight of the model is carried on truck journals just like the prototype avoiding excessive motor or gearbox wear.

SOUND The MAGIC CARPET is compatible with sound systems. Operating noise is low and similar to the prototype.

Two Magic Carpets installed in a
Q Car Company Baldwin truck.

MAGIC CARPET
$\$ 74.95$
Axle: Shouldered 1/8" x 1.760" x .088"

Part Numbers

2-RAL (insulated)					3-RAL (non-insulated)					
				Matching				Matching		
Wheel	Switcher	Freight	Passenger	Wheedset	Switcher	Freight	Passenger	Wheedset		
Size	MG-1	MGII	MGIII	\$17.95(\%g/4)	MC-	MGII	MCIII	\$17.95(fg/4)		
26/115	Na	Na	9320-4	8350-4	na	Na	93004	81654		
28/115	Na	92364	9326 -4	8355	Na	92044	93044			
30/115	9121-4	9221-4	9321-4	8354	9101-4	9201-4	93014	81694		
33/115	91494	92494	93494	8351-4	91024	9202-4	93024	8166-4		
36/115	9150-4	92504	$9350-4$	8352-4	91034	92034	93034	8167-4		
40/115	9117-4	92174	93174	83534	91054	92054	93054	8168-4		
26/135	Na	Na	9327-4	81944	Na	Na	93064	81764		
28/135	Na	92294	9329.4	$8195-4$	Na	9207-4	9307-4	$8178-4$		
30/135	91434	92434	93434	$8196-4$	91084	9208-4	93084	8180-4		
33/135	91444	92444	93444	8197-4	91094	92094	93094	81834		
36/135	9145-4	92454	93454	81984	$9110-4$	9210-4	93104	$8186-4$		
40/135	9146-4	$9246-4$	9346-4	$8199-4$	9111-4	9211-4	9311-4	8190-4		
26/145	n/a	na	93194	$8250-4$	n'a	Na	93124	na		
28/145	Na	92184	93184	8255-4	Na	92134	93134	na		
30/145	9116-4	$9216-4$	$9316-4$	82544	91144	92144	93144	Na		
33/145	91344	92344	93344	8251-4	9122-4	9222-4	93224	Na		
36/145	$9135-4$	92354	93354	8252-4	91234	92234	93234	Na		
38/145	91284	92374	$9328-4$	82594	91254	92254	93254	na		
40/145	9115-4	92154	93154	82534	91244	92244	93244	Na		
42/145	9151-4	9251-4	9351-4	$8258-4$						

\#1 Gauge Power Truck

A basic power truck for simplicity in modeling powered prototypes

Easy-to-use, just put it on the track and apply power.
Quality operation with versatility to match your creativity

A self-contained power truck for \#1 (1-3/4") gauge railroad modeling providing fine operation and prototypical speed range from a fine crawl to full speed with common 12 volt DC model railroad control power packs. High efficiency NWSL 2940 size can motor provides low amp draw (under $3 / 4 \mathrm{amp}$ per power truck) and long motor life. Works with any power supply providing 12 volt DC , exceeding 18 Volts or using AC will damage the motor. All wheel electrical pickup via wheel wipers enables the truck to run independently or you can use the wiring exiting through the kingpin into the carbody to connect directional lighting circuits or control circuits and/or connect wiring between trucks for better pickup continuity and thereby more reliable operation. Nickel plated brass wheels (units manufactured before May 1989 had aluminum wheels) for reliable, long lasting electrical pickup and heavy weight in the truck for more reliable tracking. Made in USA by NWSL,
 at right) diesel locomotives. This truck has been continually improved and upgraded since introduction with substantial improvement in life and efficiency. The ball bearing upgrade released April 1991 improves and extends operation life even more for your modeling enjoyment.

Two axle EMD \#1 Gauge (1.75") Power Truck Selections TREAD -->	$\mathbf{1 2 7 0}$	$\mathbf{1 2 3 6}$	/172
\#1 gauge power truck, 9'0" wheelbase, 40" wheels (1:32 scale) with 2940			
motor R-T-R LESS SIDEFRAMES, 12V no load speed is 79 S MPH			
Same as above except NOT POWERED	$8690-4$	$28690-4$	$48690-4$
Same as above except NO ELELCTRICAL PICKUP	$8691-4$	$28691-4$	$48691-4$
Sideframes, plastic (2)	$8692-4$	$28692-4$	$48692-4$
SERVICES - ACCESS ORIES	$8694-4$		
Custom assembly surcharge (\$20) for alternate wheel size/tread option on above (36", 33", tread)	$8697-4$	$28697-4$	$48697-4$

6 wheel power trucks for 1:32 Scale EMD Diesel Locomotives

This 6 wheel truck is manufactured by NWSL in three versions with proper scale wheelbases modeling all 3 EMD 6 wheel truck wheelbases for your special craftsman project permitting you to model and power almost any EMD prototype diesel in 1:32 scale for \#1 gauge. The \#8695-4 was used by GREAT TRAINS on their fine new EMD E9 diesel model. Size and cross-section is same as illustrated above except added axle and truck length for overall frame length of almost 5-1/2". Modeler must supply or construct own non-functional sideframes, sideframes cannot be supplied. SOLD IN MATED PAIRS ONLY. Truck design same as above drawing, longer but with same cross-section.

PROTOTYPE APPLICATION (Where used) WHEEL TREAD --->	1270	/236	/172
EMD HT-C as used on SD40, SD45, etc. 13'7" WB, uneven axle spacing, 40"/270 (11/14") w heels	8693-4	28693-4	48693-4
EMD Flexicoil as used on F45, FL9, FP45, SD7, SD9, SD40; 13'7" WB, even axle spacing 40"/270 (1-1/14") w heels	8694-4	28694-4	48694-4
EMD E-2 thru E-9 passenger diesels; $14{ }^{\prime \prime} 1{ }^{\prime \prime}$ WB, 36 "/270 (1-1/8") w heels	8695-4	28695-4	48695-4

