

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US**

Certificate of Analysis

Nov 03, 2021 | Green Roads

DEERFIELD BEACH, FL, 33441, US

Kaycha Labs

Travel Size M&J Cream Matrix: Derivative

Sample: DA11030011-002 Harvest/Lot ID: 000112019

Batch#: 000112019 Seed to Sale# N/A Batch Date: 10/04/21

Sample Size Received: 50 gram

Total Weight/Volume: N/A Retail Product Size: 10 gram

> Ordered: 10/22/21 sampled: 10/22/21 Completed: 11/03/21

Sampling Method: SOP Client Method

PASSED

Page 1 of 4

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals PASSED

Microbials

Mycotoxins

Residuals Solvents PASSED

PASSED

Water Activity

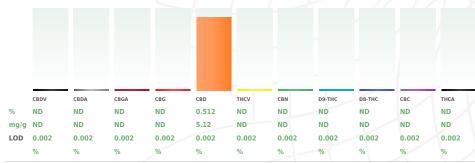
Moisture **NOT TESTED**

Terpenes **NOT TESTED**

CANNABINOID RESULTS

Total THC 0.000%

TOTAL THC/Container : 0 mg


Total CBD

TOTAL CBD/Container :51.2 mg

Total Cannabinoids

Total Cannabinoids/Container :51.2 mg

PASSED

Analyzed By	Weight	E	ctraction date	Extracted By	
457	NA	1	1/01/21		457
Analyte		L	OD	Result	
Filth and Foreign I	Material	0.	1	ND	
Analysis Method	-SOP.T.40.0	13	Batch Date: 11/	01/21 11:07:29	
Analytical Batch	-DA033412F	IL	Reviewed On - 1	1/01/21 11:39:19	
Instrument Use	d : Filth/Forei	gn N	laterial Microscop	oe .	

Cannabinoid Profile Test

Analyzed by Weight Extraction date: Extracted By: 450 2.6693g Analysis Method -SOP.T.40.020, SOP.T.30.050 11/01/21 04:11:53 Reviewed On - 11/02/21 13:30:20 Batch Date: 11/01/21 10:40:57 Analytical Batch -DA033402POT Instrument Used: DA-LC-003 (Derivatives) Running On: 11/01/21 20:29:42

110220 220 CE0123 929C6-929H

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection (HPLC-UV). (Method: SOP.T.30.050 for sample prep and Shimadzu High Sensitivity Method SOP.T.40.020 for analysis. LOQ for all cannabinoids is 1 mg/L).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

11/03/21

Signed On

DAVIE, FL, 33314, US

Travel Size M&J Cream

Matrix : Derivative

Certificate of Analysis

PASSED

Green Roads

601 Fairway Dr

DEERFIELD BEACH, FL, 33441, US **Telephone:** (844) 747-3367

Email: LAURA@GREENROADSWORLD.COM

Sample : DA11030011-002 Harvest/LOT ID: 000112019

Batch#:000112019 Sampled: 10/22/21

Ordered: 10/22/21

Sample Size Received: 50 gram

Total Weight/Volume: N/A Completed: 11/03/21 Expires: 11/03/22

Sample Method : SOP Client Method

Page 2 of 4

Pesticides

PASSED

0.01 0.01 0.01 0.01 0.01 0.01	ppm ppm ppm ppm	0.3 3 2	ND ND
0.01 0.01 0.01	ppm		ND
0.01 0.01		2	
0.01	ppm	-	ND
		3	ND
0.01	ppm	0.1	ND
	ppm	3	ND
0.01	ppm	3	ND
0.01	ppm	0.5	ND
0.01	PPM	3	ND
0.05	ppm	0.5	ND
0.01	ppm	0.1	ND
0.1	ppm	3	ND
0.1	ppm	3	ND
0.01	ppm	0.1	ND
0.02	ppm	0.5	ND
0.01	ppm	0.1	ND
0.01	ppm	0.1	ND
0.01	ppm	3	ND
0.01		0.1	ND
0.01		1.5	ND
			ND
			ND
			ND
0.01		0.1	ND
			ND ND
			ND ND
			ND ND
			ND ND
	0.01 0.05 0.01 0.1 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 PPM 0.05 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01 ppm	0.01 PPM 3 0.05 ppm 0.5 0.01 ppm 0.1 0.1 ppm 3 0.01 ppm 3 0.01 ppm 0.1 0.02 ppm 0.5 0.01 ppm 0.1 0.02 ppm 0.1 0.01 ppm 1.5 0.01 ppm 0.1 0.02 ppm 0.1 0.03 ppm 0.1 0.04 ppm 0.1 0.05 ppm 0.1 0.01 ppm 0.5 0.05 ppm 0.5 0.05 ppm 0.5 0.06 ppm 0.5 0.07 0.08 ppm 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Pesticides	LOD	Units	Action Level	Result
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRINS	0.05	ppm	1	ND
PYRIDABEN	0.02	ppm	3	ND
SPIROMESIFEN	0.01	ppm	3	ND
SPIROTETRAMAT	0.01	ppm	3	ND
SPIROXAMINE	0.01	ppm	0.1	ND
TEBUCONAZOLE	0.01	ppm	1	ND
THIACLOPRID	0.01	ppm	0.1	ND
THIAMETHOXAM	0.05	ppm	1	ND
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.05	PPM		ND
TOTAL DIMETHOMORPH	0.02	PPM	3	ND
TOTAL PERMETHRIN	0.01	ppm	1	ND
TOTAL SPINETORAM	0.02	PPM	3	ND
TOTAL SPINOSAD	0.01	ppm	3	ND
TRIFLOXYSTROBIN	0.01	ppm	3	ND
PENTACHLORONITROBENZENE (PCNB) *	0.01	PPM	0.2	ND
PARATHION-METHYL *	0.01	PPM	0.1	ND
CAPTAN *	0.025	PPM	3	ND
CHLORDANE *	0.01	PPM	0.1	ND
CHLORFENAPYR *	0.01	PPM	0.1	ND
CYFLUTHRIN *	0.01	PPM	1	ND
CYPERMETHRIN *	0.01	PPM	1	ND

Æ
0

Analyzed by

Pesticides

Extraction date Extracted By PASSED

585 , 1665 0.21529 11/01/21 03:11:21
Analysis Method - SOP.T.30.065, SOP.T.40.065, SOP.T.40.066, SOP.T.40.070 , SOP.T.30.065, SOP.T.40.070
Analytical Batch - DA0333397PES , DA033384VOL Reviewed On-Instrument Used: DA-LCMS-003 (PES), DA-GCMS-001 Running On: 11/01/21 17:01:11, 11/01/21 16:58:06

Batch Date: 11/01/21 10:31:04

Reagent

Dilution Consums, ID 250

Pesticide screen is performed using LC-MS and/or GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 67 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and GCMSMS. SOP.T.40.065/SOP.T.40.066/SOP.T.40.070 Procedure for Pesticide Quantification Using LCMS and GCMS). * Volatile Pesticide screening is performed using GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Analytes marked with an asterisk were tested using GC-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

11/03/21

Signature Signed On

Certificate of Analysis

PASSED

Green Roads

601 Fairway Dr

DEERFIELD BEACH, FL, 33441, US **Telephone:** (844) 747-3367

Email: LAURA@GREENROADSWORLD.COM

Sample : DA11030011-002 Harvest/LOT ID: 000112019

Batch#:000112019 Sampled:10/22/21

Ordered: 10/22/21

Sample Size Received: 50 gram

Total Weight/Volume : N/A

Completed: 11/03/21 Expires: 11/03/22 Sample Method: SOP Client Method

Page 3 of 4

Residual Solvents

PASSED

Residual Solvents

PASSED

Solvent	LOD	Units	Action Level	Pass/Fail	Result
METHANOL	25	ppm	250	PASS	ND
ETHANOL	500	ppm	5000	PASS	ND
PENTANES (N-PENT	'ANE) 75	ppm	750	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
2-PROPANOL	50	ppm		PASS	<250
ACETONITRILE	6	ppm	60	PASS	<30
DICHLOROMETHAN	E 12.5	ppm	125	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
1,2-DICHLOROETHA	NE 0.2	ppm	2	PASS	ND
BUTANES (N-BUTAN	IE) 500	ppm	5000	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
1,1-DICHLOROETHE	NE 0.8	ppm	8	PASS	ND
TRICHLOROETHYLE	NE 2.5	ppm	25	PASS	ND

nalyzed by	Weight	Extraction date	Extracted By

550 0.0255g NA NA

Analysis Method -SOP.T.40.032
Analytical Batch -DA033424SOL
Instrument Used: DA-GCMS-002
Reviewed On - 11/02/21 15:12:44

Running On:

Batch Date: 11/01/21 17:30:16

Reagent	Dilution	Consums. ID
030420.09	1	R2017.271
		G201.062

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 21 Residual solvents.(Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

11/03/21

Signature Signed On

DAVIE, FL, 33314, US

Kaycha Labs

Travel Size M&J Cream

Matrix: Derivative

Certificate of Analysis

PASSED

Green Roads

601 Fairway Dr

DEERFIELD BEACH, FL, 33441, US

Telephone: (844) 747-3367 Email: LAURA@GREENROADSWORLD.COM Sample : DA11030011-002 Harvest/LOT ID: 000112019

Batch#:000112019 Sampled: 10/22/21

Ordered: 10/22/21

Sample Size Received: 50 gram

Total Weight/Volume: N/A Completed: 11/03/21 Expires: 11/03/22

Sample Method : SOP Client Method

Page 4 of 4

021921 32

Microbials

PASSED

OCHRATOXIN A

Mycotoxins

PASSED

Analyte
ESCHERICHIA_COLI_SHIGELLA_SPP
SALMONELLA_SPECIFIC_GENE
ASPERGILLUS_FLAVUS
ASPERGILLUS_FUMIGATUS
ASPERGILLUS_TERREUS
ASPERGILLUS_NIGER

LOD	Result	Action Level
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	

Analysis Method -SOP.T.40.043 / SOP.T.40.044 / SOP.T.40.041 Analytical Batch -DA033389MIC Batch Date: 11/01/21 09:14:25 Instrument Used: PathogenDx Scanner DA-111 Running On:

Analyzed by	Weight	Extraction date	Extracted By
1829	1.0065g	NA	NA

1023	1.00059	INA	NA.
Reagent		7-4	Dilution
101521.R30			1 1
102921.R38			
082321.29			
110001 DCF			

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fumigatus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample falis the microbiological-impurity testing. Pour-plating is used for quantitation and confirmation, Total Yeast and Mold has an action limit of 100,000 CFU.

Analyte	LOD	Units	Result	Action Leve	
AFLATOXIN G2	0.002	ppm	ND	0.02	
AFLATOXIN G1	0.002	ppm	ND	0.02	
AFLATOXIN B2	0.002	ppm	ND	0.02	
AFLATOXIN B1	0.002	ppm	ND	0.02	

ppm

ND

0.02

Analysis Method -SOP.T.30.065, SOP.T.40.065

Analytical Batch -DA033398MYC | Reviewed On - 11/02/21 13:17:47

0.002

Instrument Used: DA-LCMS-003 (MYC) Running On: 11/01/21 17:01:02 Batch Date: 11/01/21 10:32:36

Analyzed by	Weight	Extraction date	Extracted By
585	g	11/01/21 03:11:15	585

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.065 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Aflatoxin B1, B2, G1, and G2 must individually be <20ug/Kg. Ochratoxins must be $<20\mu g/Kg$

Heavy Metals

PASSED

Reagent	Reagent	Dilution	Consums. ID	
100121.06	102921.R37	100	179436	
102921.R27	110121.R02		3146-870-008	
102621.R48	110121.R03		12265-115CC	
101421.R04	102621.R01			
102621.R47	102921.R36			
102521.R03	021921.13			

Metal	LOD	Unit	Result	Action Level	
ARSENIC	0.02	PPM	<0.1	3	
CADMIUM	0.02	PPM	ND		
MERCURY	0.02	PPM	ND	55	
LEAD	0.05	PPM	0.723	10	
Analyzed by	Weight	Extraction date		Extracted By	
53	0.2424g	11/01/21 01:	:11:58	1879	

Analysis Method -SOP.T.40.050, SOP.T.30.052, SOP.T.30.053, SOP.T.40.051 Analytical Batch -DA033407HEA | Reviewed On - 11/02/21 07:22:20

Instrument Used: DA-ICPMS-003 Running On: 11/02/21 07:10:03 Batch Date: 11/01/21 10:43:38

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) using Method SOP.T.30.052, SOP.T.30.053 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050, SOP.T.40.051 Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

11/03/21

Signature

Signed On