

Doc. Number:

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G121ICE SUFFIX: L02

Customer: APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By

Version 0.0 15 Feb 2019 1/24

CONTENTS

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 GENERAL SPECIFICATIONS	 4
2. MECHANICAL SPECIFICATIONS	 4
3. ABSOLUTE MAXIMUM RATINGS 3.1 ABSOLUTE RATINGS OF ENVIRONMENT 3.2 ELECTRONICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT	 4
4. ELECTRICAL SPECIFICATION 4.1 FUNCTION BLOCK DIAGRAM 4.2 INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISICS 4.3.1 LCD ELECTRONICS SPECIFICATION 4.3.2 BACKLIGHT UNIT 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE	 6
5. OPTICAL CHARACTERISTICS 5.1 TEST CONDITIONS 5.2 OPTICAL SPECIFICATIONS	 17
6. Reliability Test Criteria	 20
7. MODULE LABEL 7.1 MODULE LABEL 7.2 CARTON LABEL	 21
8 PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 STORAGE PRECAUTIONS 8.3 OPERATION PRECAUTIONS 8.4 OTHER PRECAUTIONS	 23
9.MECHANICAL CHARACTERISTICS	 24

REVISION HISTORY

Version	Date	Section	Description
Ver. 0.0	Feb.15,2019	All	Tentative Spec was first issued.

Version 0.0 15 Feb 2019 3/24

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G121ICE-L01 is a 12.1" TFT Liquid Crystal Display module with LED Backlight unit LVDS interface. This module supports 1280 x 800 Wide-XGA MVA mode and can display 262k/16.7M colors . The LED converter for Backlight is built in control board.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	12.1" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.204(H) x 0.204 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262k/16.7M	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	AG type, 3H hard coating	-	-
Luminance, White	400	Cd/m2	
Power Consumption	TBD		

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
	Horizontal (H)	277.5	278	278.5	mm		
Module Size	Vertical (V)	183.5	184	184.5	mm	(1)	
	Thickness (T)	9.5	10	10.5	mm		
Bezel Area	Horizontal	263.82	264.12	264.42	mm		
Dezei Alea	Vertical	165.9	166.2	166.5	mm		
Active Area	Horizontal	-	261.12	-	mm		
Active Area	Vertical	-	163.2	-	mm		
Weight		•	(485)	(505)	g		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
iteiii	Syllibol	Min.	Max.	Offic	Note	
Storage Temperature	TST	(-20)	(70)	°C	(1)	
Operating Ambient Temperature	TOP	(-20)	(70)	°C	(1), (2)	

Note (1)

- (a) 90 %RH Max. (Ta \leftarrow 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Version 0.0 15 Feb 2019 4/24

3.2 ELECTRICAL ABSOLUTE RATINGS

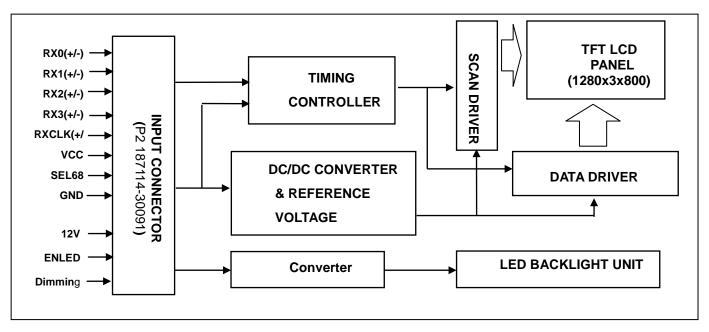
3.2.1 TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCCS	-0.3	+4.0	٧	(1)	
Logic Input Voltage	V _{IN}	-0.3	Vcc+0.3	V	(1)	

3.2.2 BACKLIGHT UNIT

Itom	Value			Unit	Note	
Item	Min	Тур.	Max.	Offic	Note	
LED Converter Input voltage	10.8	12.0	13.2	V_{DC}	(1) (2)	
LED Converter Input Current	-	(0.5)	-	A _{DC}	(1), (2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.


Note (2) Specified values are for LED (Refer to Section 3.2 for further information).

Version 0.0 15 Feb 2019 5/24

4. ELECTRICAL SPECIFICATIONS

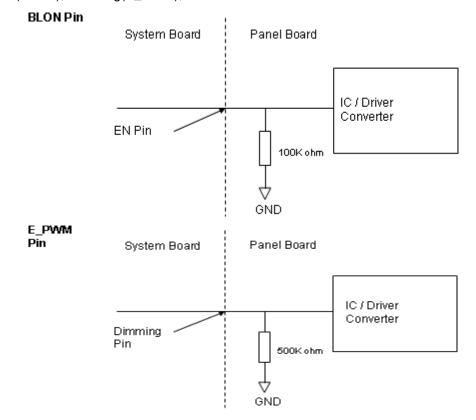
4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

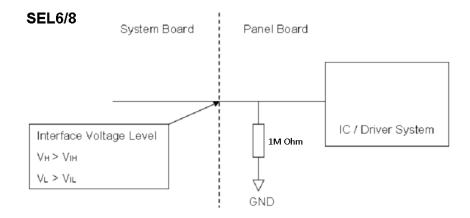
Pin No.	Symbol	Description	Note
1	12V	LED power	-
2	12V	LED power	-
3	12V	LED power	-
4	12V	LED power	-
5	ENLED	Enable pin	(3)
6	Dimming	Backlight Adjust	(3)
7	NC	No Connection or Ground	-
8	NC	No Connection or Ground	-
9	VCC	Power supply: +3.3V	
10	VCC	Power supply: +3.3V	-
11	GND	Ground	-
12	GND	Ground	-
13	RX0-	Negative transmission data of pixel 0	-
14	RX0+	Positive transmission data of pixel 0	-
15	GND	Ground	-
16	RX1-	Negative transmission data of pixel 1	-
17	RX1+	Positive transmission data of pixel 1	-
18	GND	Ground	-
19	RX2-	Negative transmission data of pixel 2	-
20	RX2+	Positive transmission data of pixel 2	-

Version 0.0 15 Feb 2019 6/24



21	GND	Ground	-
22	RXCLK-	Negative of clock	-
23	RXCLK+	Positive of clock	-
24	GND	Ground	-
25	RX3-	Negative transmission data of pixel 3	-
26	RX3+	Positive transmission data of pixel 3	-
27	GND	Ground	-
		LVDS 6/8 bit select function control,	
28	SEL6/8	Low or NC → 6 bit Input Mode	(2) (3)
		High → 8bit Input Mode	
29	GND	Ground	-
30	NC	No Connection or Ground	-

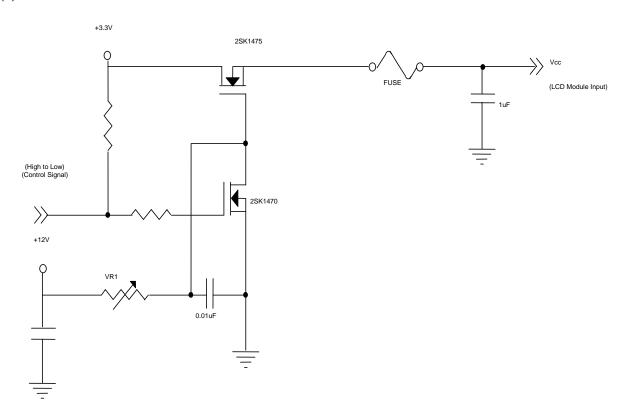
Note (1) Connector Part No.: P2 187114-30091


Note (2) "Low" stands for 0V. "High" stands for 3.3V

Note (3) ENLED(BLON), Dimming(E_PWM), SEL6/8 as shown below :

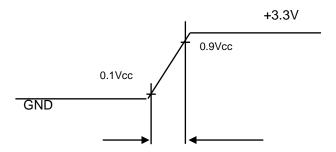
Version 0.0 15 Feb 2019 7/24

Version 0.0 15 Feb 2019 8/24

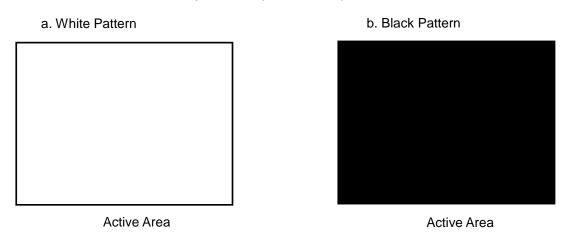

4.3 ELECTRICAL CHARACTERISTICS

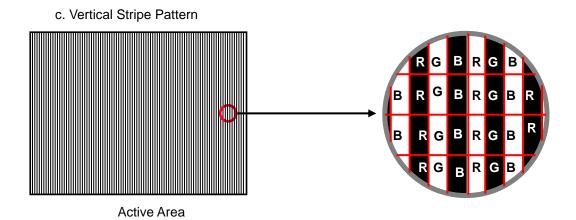
4.3.1 LCD ELETRONICS SPECIFICATION

					1
Symbol		Value		Linit	Note
Symbol	Min.	Тур	Max.	Offic	Note
Vcc	(3.0)	(3.3)	(3.6)	V	-
V_{RP}	-	(50)	-	mV	-
I_{RUSH}		TBD		Α	(2)
I _{IS}	-	-	TBD	Α	(2)
	TBD	TBD	TBD	mΑ	(3)a
-	TBD	TBD	TBD	mA	(3)b
$V_{TH(LVDS)}$	+100	-	-	mV	V _{CM} =1.2V
$V_{TL(LVDS)}$	-	-	-100	mV	V _{CM} =1.2V
V _{CM}	(1.125)	-	(1.375)	V	
V _{ID}	(100)	-	(600)	mV	
R_T	-	100	-	Ohm	
	V _{RP} I _{RUSH} I _{IS} V _{TH(LVDS)} V _{CM} V _{ID}	Vcc (3.0) V _{RP} - I _{RUSH} I _{IS} - TBD TBD TBD V _{TH(LVDS)} +100 V _{TL(LVDS)} - V _{CM} (1.125) V _{ID} (100)	Symbol Min. Typ Vcc (3.0) (3.3) V _{RP} - (50) I _{RUSH} TBD I _{IS} - - - TBD TBD - TBD TBD V _{TH(LVDS)} +100 - V _{TL(LVDS)} - - V _{CM} (1.125) - V _{ID} (100) -	Symbol Min. Typ Max. Vcc (3.0) (3.3) (3.6) V _{RP} - (50) - I _{RUSH} TBD TBD TBD I _{IS} - - TBD TBD - TBD TBD TBD TBD V _{TH(LVDS)} +100 - - -100 V _{CM} (1.125) - (1.375) V _{ID} (100) - (600)	Symbol Min. Typ Max. Unit Vcc (3.0) (3.3) (3.6) V VRP - (50) - mV IRUSH TBD TBD A IIS - - TBD A TBD TBD TBD mA TBD TBD TBD mA VTH(LVDS) +100 - - mV VTL(LVDS) - - -100 mV VCM (1.125) - (1.375) V IVID (100) - (600) mV


Note (1) The assembly should be always operated within above ranges.

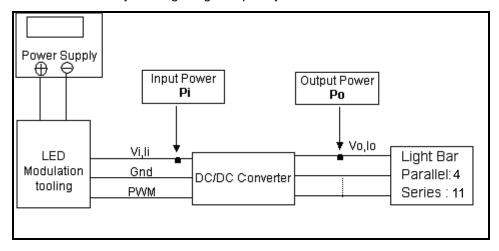
Note (2) Measurement Conditions:




Version 0.0 15 Feb 2019 9/24

VCC rising time is 470us

Note (3)The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is


Version 0.0 15 Feb 2019 **10/24**

4.3.2 BACKLIGHT UNIT

D	- 4	0		Value		11.2	NI.
Param	eter	Symbol	Min.	Тур.	Max.	Unit	Note
`	Converter voltage)	V_{i}	10.8	12.0	13.2	V_{DC}	(Duty 100%)
(LED li	ight bar input nt)	l _i	140	160	180	A_{DC}	(Duty 100%)
LED Li Voltag	ightbar ge	Vf	-	(31.9)	-	V_{DC}	I _f = 80 mA/EA
LED C	urrent	I_f	-	40	ı	mΑ	Per EA
Input F Consu	Power mption	P_{i}	-	(5.6)	-	W	(1)
EN Control	Backlight on	ENLED	2.5	3.3	5.0	V	
Level	Backlight off	LINEED	0		0.8	V	
PWM Control	PWM High Level	Dimming	2.5		5.0	V	
Level	PWM Low Level	Dimining	0		0.15	V	
PWM Con Frequency		f _{PWM}	190	200	20k	Hz	(3)
PWM Con Ratio	trol Duty		2		100	%	(3), @200Hz
LED L	ife Time	L_{BL}	50000	-	-	Hrs	(3)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.

Note (3) At 200Hz PWM control frequency, duty ratio range is restricted from 2% to 100%, When PWM control frequency is 20kHz, duty ratio range is restricted from 10% to 100%.

Version 0.0 15 Feb 2019 11/24

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

			Data Signal																
	Color			Re	ed					Gre	en					BI	ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

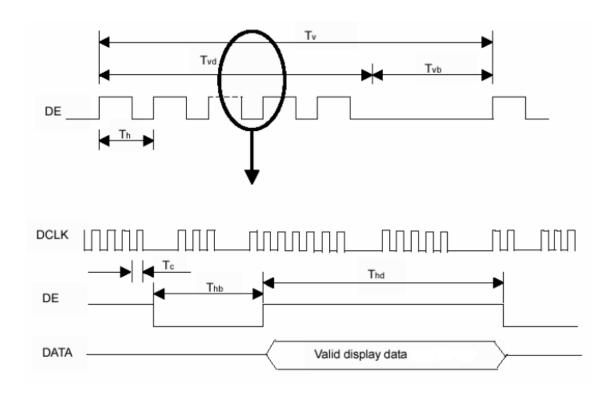
Version 0.0 15 Feb 2019 12/24

													Data	Siç	gnal										
	Color		ı	1	R	ed			ı				Gı	reen	ı				1		BI	ue		1	
		R7 R6 R5 R4 R3 R2 R1 R0			G7	G6	G5	G4	G3	G2	G1	G0	В7	B7 B6 B5 B4 B3 B2 B1 B0				В0							
Basic Colors	Black Red Green Blue Cyan Magenta Yellow	0 1 0 0 0 1 1	0 0 1 0 1 0	0 0 1 0 1 0	0 0 1 0 1 0	0 0 1 0 1 0 1	0 0 1 0 1 0	0 0 1 0 1 0	0 0 1 0 1 0	0 0 1 0 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1	0 0 0 1 1 1	0 0 0 1 1 1	0 0 0 1 1 1	0 0 1 1 1 0	0 0 0 1 1 1 0							
Gray Scale Of Red	White Red(0) / Dark Red(1) Red(2) : : Red(253) Red(254) Red(255)	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0
Gray Scale Of Green	Green(0)/ Dark Green(1) Green(2) : : Green(253) Green(254) Green(255)	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : 0 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : : : Blue(253) Blue(254) Blue(255)	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : : 0 0 0	0 0 0 0 0 0	0 0 0 : : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1

Note: 0: Low Level Voltage, 1: High Level Voltage

Version 0.0 15 Feb 2019 13/24

4.5 DISPLAY TIMING SPECIFICATIONS

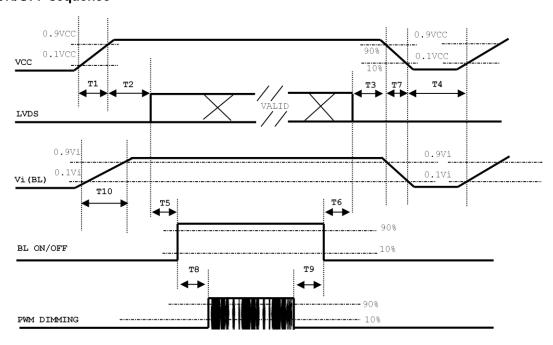

The input signal timing specifications are shown as the following table and timing diagram.

Signal	ltem	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	(66.1)	(71)	(89.7)	MHz	-
	Vertical Total Time	Tv	(810)	(823)	(890)	Th	(3)
DE	Vertical Addressing Time	Tvd	(800)	(800)	(800)	Th	-
DE	Horizontal Total Time	Th	(1360)	(1440)	(1680)	Tc	-
	Horizontal Addressing Time	Thd	(1280)	(1280)	(1280)	Tc	-

Note: (1) Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

- (2) Frame rate is 60Hz
- (3) The Tv must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM


Version 0.0 15 Feb 2019 14/24

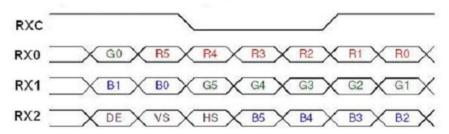
4.6 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

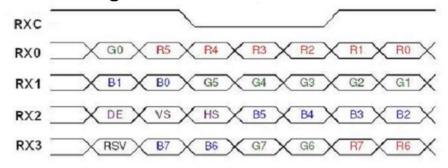
Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3)The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.


Doromotor		Value		Units
Parameter	Min	Тур	Max	Units
T1	0.5		10	ms
T2	0		50	ms
Т3	0		50	ms
T4	500			ms
T5	450			ms
Т6	200			ms
T7	10		100	ms
Т8	10			ms
Т9	10			ms
T10	20		50	ms

Version 0.0 15 Feb 2019 15/24



The Input Data Format

SEL 6/8="Low" or "NC" for 6 Bits LVDS

SEL 6/8="High" for 8 Bits LVDS

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Version 0.0 15 Feb 2019 16/24

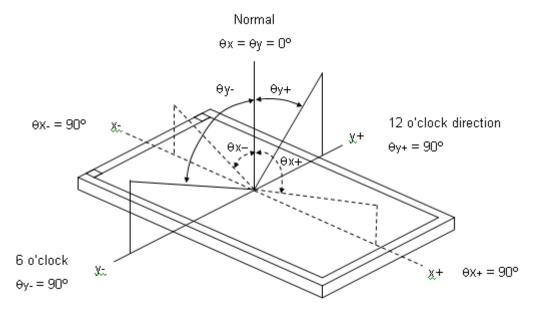
5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{CC}	3.3	V			
Convertor Voltage	A according to the principal	value in #2 ELECTRICA	I CLIADACTEDICTICO"			
Convertor Duty	According to typical value in "3. ELECTRICAL CHARACTE					

The relative measurement methods of optical characteristics are shown in 5.2. and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Item	1	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio)	CR			(1000)	1	-	(2), (5)
Pospopas Tim		T_R		-	(15)		ms	(2)
Response Tim	ie	T_F		-	(12)		ms	(3)
Luminance of	White (5P)	L_{AVE}		(320)	(400)	-	cd/ m²	(4), (5)
White Variatio	n	δW	$\theta_x=0^\circ, \theta_Y=0^\circ$ Viewing	-	(1.25)		-	(5), (6)
	Dod	Rx	Normal		(0.592)		-	
	Red	Ry	Angle		(0.355)		-	
	Croon	Gx		т	(0.350)	T	-	
Color	Green	Gy		Typ 0.05	(0.575)	Тур. +	-	(1), (5)
Chromaticity	Blue	Bx			(0.155)	0.05	-	
	blue	Ву		0.00	(0.111)	0.00	-	
	White	Wx			(0.313)		-	
	vviille	Wy			(0.329)		-	
	Horizo	θ_{x} +			(88)	-		
Viewing	ntal	θ_{x} -	CD>40		(88)	-	Deg	(1),
Angle	Vertic	θ_{Y} +	CR≥10		(88)	-		(5)
	al	θ _Y -			(88)	-		

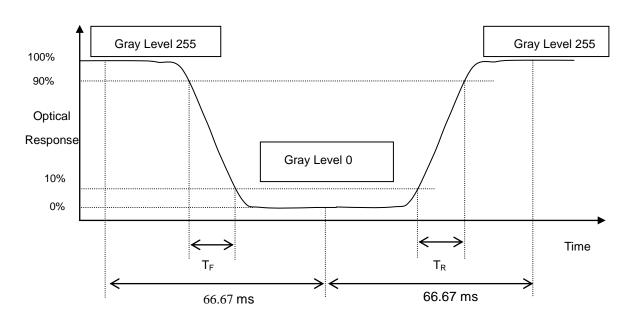
Version 0.0 15 Feb 2019 17/24

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L63: Luminance of gray level 255

L 0: Luminance of gray level 0

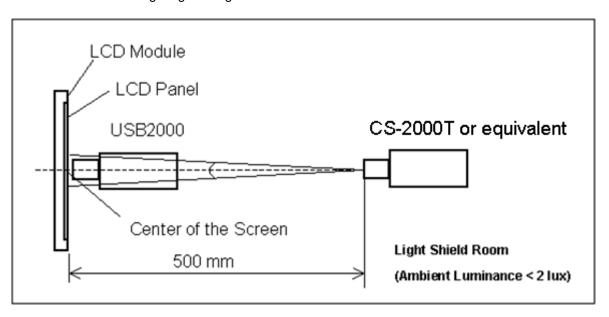
CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Version 0.0 15 Feb 2019 18/24

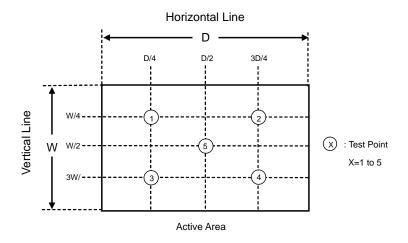
Note (4) Definition of Average Luminance of White (LAVE):


Measure the luminance of gray level 255 at 5 points

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5)]}}$$

Version 0.0 15 Feb 2019 19/24

6. Reliability Test Criteria

Test Item	Test Condition	Note
High Temperature Storage Test	70°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	(4) (0)
Thermal Shock Storage Test	-20°C, 0.5hour←→70°C, 0.5hour; 100cycles, 1hour/cycle	(1),(2) (4),(5)
High Temperature Operation Test	70°C, 240 hours	(4),(3)
Low Temperature Operation Test	-20°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	(1),(2) (4),(6)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z direction	(2), (3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction	(2), (3)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 73°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification
- is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

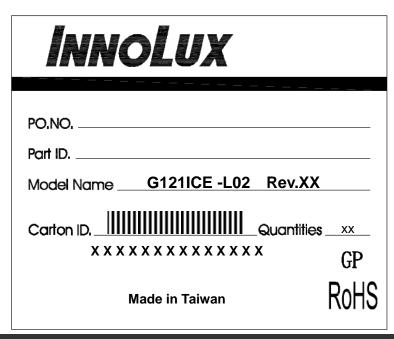
Version 0.0 15 Feb 2019 **20/24**

7. MODULE LABEL

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G121ICE-L02


(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) INX barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description
XX	INX internal use	-
XX	Revision	Cover all the change
Х	INX internal use	-
XX	INX internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

7.2 CARTON LABEL

Version 0.0 15 Feb 2019 21/24

(a) P/N: Internal control

(b) Model Name: G121ICE-L02

(c) Production year and month: shown at left down corner

(d) Production location: Made In XXXX. XXXX stands for production location.

Version 0.0 15 Feb 2019 22/24

INNOLUX 群創光電

PRODUCT SPECIFICATION

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

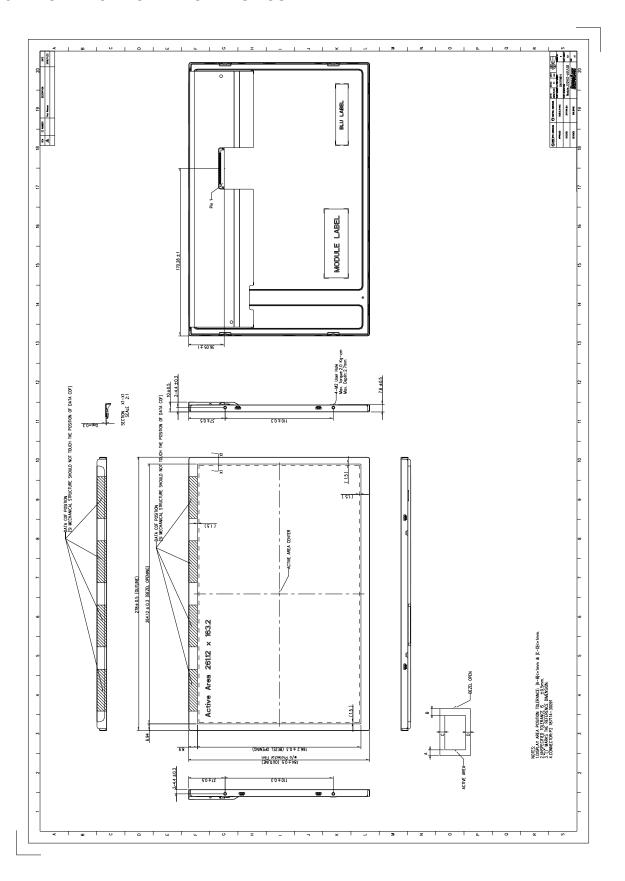
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.


8.4 OTHER PRECAUTIONS

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

Version 0.0 15 Feb 2019 23/24

9. MECHANICAL CHARACTERISTICS

Version 0.0 15 Feb 2019 24/24