Table des matières

Introduction .. 9

Chapitre 1. Émission acoustique : définition et généralités 13
 1.1. Généralités .. 13
 1.2. Les ondes acoustiques mises en jeu 20
 1.2.1. Milieu infini : ondes de volume 21
 1.2.2. Milieu semi-infini : ondes de surface 21
 1.2.3. Les ondes guidées .. 22
 1.2.4. Milieu anisotrope et atténuation de l’onde 23
 1.3. Les capteurs et le système d’acquisition 24
 1.4. Localisation des sources .. 29
 1.5. Les descripteurs extraits du signal d’EA 34
 1.5.1. Descripteurs dans le domaine temporel 34
 1.5.2. Descripteurs dans le domaine fréquentiel 40
 1.5.3. Analyse temps-fréquence ... 42
 1.6. Les différentes analyses des données d’EA 44
 1.6.1. Analyse conventionnelle : analyse qualitative 44
 1.6.1.1. Analyse temporelle .. 45
 1.6.1.2. Analyse statistique ... 50
 1.6.1.3. Analyse de corrélation ... 52
 1.6.2. Analyse statistique multivariable : application des techniques de reconnaissance de forme 55
 1.6.2.1. Mesure de similitude ... 57
 1.6.2.2. Normalisation des descripteurs d’EA et réduction de la dimensionnalité .. 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.2.3. Classification supervisée</td>
<td>60</td>
</tr>
<tr>
<td>1.6.2.4. Classification non supervisée</td>
<td>63</td>
</tr>
<tr>
<td>1.7. Apport de l’émission acoustique quantitative</td>
<td>69</td>
</tr>
<tr>
<td>Chapitre 2. Identification de la signature acoustique des mécanismes d’endommagement</td>
<td>71</td>
</tr>
<tr>
<td>2.1. Sélection des signaux à analyser</td>
<td>71</td>
</tr>
<tr>
<td>2.2. Signature acoustique de la rupture des fibres : matériaux modèles</td>
<td>75</td>
</tr>
<tr>
<td>2.2.1. Caractérisation des fibres à l’échelle de l’écheveau de monofilaments</td>
<td>75</td>
</tr>
<tr>
<td>2.2.2. À l’échelle d’un microcomposite</td>
<td>80</td>
</tr>
<tr>
<td>2.2.3. À l’échelle d’un minicomposite</td>
<td>83</td>
</tr>
<tr>
<td>2.3. Discrimination à l’aide de descripteurs temporels des mécanismes d’endommagement dans le composite : analyse monodescripteur</td>
<td>86</td>
</tr>
<tr>
<td>2.4. Identification de la signature acoustique des mécanismes d’endommagement du composite à partir de descripteur fréquentiel</td>
<td>90</td>
</tr>
<tr>
<td>2.5. Identification de la signature acoustique des mécanismes d’endommagement du composite à l’aide d’une analyse temps/fréquence</td>
<td>91</td>
</tr>
<tr>
<td>2.6. Émission acoustique modale</td>
<td>92</td>
</tr>
<tr>
<td>2.7. Analyse statistique multivariable non supervisée</td>
<td>94</td>
</tr>
<tr>
<td>2.7.1. Identification des endommagements pour des composites à matrice organique</td>
<td>95</td>
</tr>
<tr>
<td>2.7.2. Identification de la séquence d’endommagement en fatigue statique pour un composite à matrice céramique</td>
<td>98</td>
</tr>
<tr>
<td>2.7.3. Identification de la séquence d’endommagement en fatigue cyclique pour un composite à matrice céramique</td>
<td>102</td>
</tr>
<tr>
<td>2.7.4. Validation de la labellisation des classes</td>
<td>105</td>
</tr>
<tr>
<td>2.8. Analyse statistique multivariable supervisée</td>
<td>107</td>
</tr>
<tr>
<td>2.8.1. Bibliothèque créée à partir de données obtenues sur matériaux modèles</td>
<td>109</td>
</tr>
<tr>
<td>2.8.2. Bibliothèque créée à partir de données structurées par classification non supervisée</td>
<td>111</td>
</tr>
<tr>
<td>2.9. Limites de l’analyse statistique multivariable basée sur les techniques de reconnaissance de forme</td>
<td>113</td>
</tr>
<tr>
<td>2.9.1. Performance et limites des algorithmes</td>
<td>114</td>
</tr>
<tr>
<td>2.9.1.1. Classification non supervisée</td>
<td>114</td>
</tr>
<tr>
<td>2.9.1.2. Classification supervisée : sensibilité à une mauvaise labellisation des signaux de la bibliothèque</td>
<td>120</td>
</tr>
</tbody>
</table>
2.9.2. Influence des conditions d’acquisition et de la géométrie des échantillons ... 121
 2.9.2.1. Influence du couplage du capteur .. 122
 2.9.2.2. Influence de la position des capteurs 122
 2.9.2.3. Influence du choix du capteur .. 127
 2.9.2.4. Influence de l’épaisseur de l’échantillon et de la séquence d’empilement ... 127

2.10. Apport de la modélisation :
vers une émission acoustique quantitative 131

Chapitre 3. Prévision de la durée de vie 133
 3.1. Modèles de pronostic : modèle physique ou modèles orientés données ... 135
 3.2. Généralités sur les lois de puissance : lien avec la sismologie 138
 3.3. Énergie acoustique ... 142
 3.3.1. Définition de l’énergie acoustique .. 142
 3.3.2. Prise en compte du couplage et définition d’une énergie équivalente. ... 143
 3.4. Identification de temps critiques ou de temps caractéristiques lors des essais de longues durées : vers la prévision de la durée de vie .. 144
 3.4.1. Le coefficient d’émission R_{AE} .. 145
 3.4.2. Apport du cercle optimal : mise en évidence de région critique .. 148
 3.4.3. Le coefficient d’atténuation B .. 149
 3.4.4. Le coefficient R_{CP} pour les essais de fatigue cyclique 151
 3.4.5. Le couplage entre l’énergie acoustique et l’énergie mécanique :
 la *Sentry Function* ... 152
 3.5. Simulation de la libération d’énergie à l’aide d’une loi de type puissance : prévision du temps à rupture 155

Conclusion .. 159

Bibliographie .. 161

Index .. 189