

| Infitec Time Delay Range Chart |            |   |        |         |
|--------------------------------|------------|---|--------|---------|
| Time Range                     | Time Delay |   |        |         |
| 1                              | 0.05       | - | 1.0    | Seconds |
| 1 A                            | 0.1        | - | 3.0    | Seconds |
| 1B                             | 0.25       | - | 5.0    | Seconds |
| 1C                             | 0.25       | - | 20.0   | Seconds |
| 2                              | 0.3        | - | 10.0   | Seconds |
| 2A                             | 0.5        | - | 15.0   | Seconds |
| 2B                             | 0.5        | - | 30.0   | Seconds |
| 2C                             | 1.0        | - | 60.0   | Seconds |
| 2D                             | 1.0        | - | 90.0   | Seconds |
| 3                              | 3.0        | - | 100.0  | Seconds |
| 3 A                            | 3.0        | - | 120.0  | Seconds |
| 3B                             | 5.0        | - | 180.0  | Seconds |
| 3C                             | 6.0        | - | 240.0  | Seconds |
| 3D                             | 10.0       | - | 300.0  | Seconds |
| 3E                             | 12.0       | - | 360.0  | Seconds |
| 3F                             | 12.0       | - | 420.0  | Seconds |
| 3G                             | 12.0       | - | 480.0  | Seconds |
| 3 H                            | 20.0       | - | 600.0  | Seconds |
| 4                              | 30.0       | - | 1000.0 | Seconds |
| 5                              | 0.3        | - | 10.0   | Minutes |
| 5 A                            | 0.5        | - | 20.0   | Minutes |
| 5B                             | 1.0        | - | 30.0   | Minutes |
| 5C                             | 2.0        | - | 60.0   | Minutes |
| 6                              | 3.0        | - | 100.0  | Minutes |
| 6A                             | 3.0        | - | 120.0  | Minutes |
| 6B                             | 5.0        | - | 180.0  | Minutes |
| 6C                             | 6.0        | - | 240.0  | Minutes |
| 6D                             | 10.0       | - | 300.0  | Minutes |
| 6E                             | 12.0       | - | 360.0  | Minutes |
| 6F                             | 12.0       | - | 420.0  | Minutes |
| 6G                             | 12.0       | - | 480.0  | Minutes |
| 6H                             | 20.0       | - | 600.0  | Minutes |
| 7                              | 100.0      | - | 1000.0 | Minutes |

# **How To Use The Infitec Time Delay Range Chart**

### For Local, Remote & Lockshaft Adjustments

Use the Time Delay Range Chart for Knob, Remote & Lockshaft adjustments only. Select the appropriate Time Range and add to ordering information for selected model

Ex. QMS522C 1 - 60 Seconds

#### For Remote Adjustment Only

For Time Ranges 1 thru 6H

All delays calibrated 1.0 Megohm equals maximum delay

For Time Range 7

3.0 Megohms equals maximum time delay

## For Fixed Time Delays

For Fixed Delays specify time in seconds, minutes or hours. If time is in minutes follow time delay with an M suffix (ex. 3M = 3 Minutes). If time is in hours follow time delay with an H suffix (ex. 3H = 3 Hours)

Note: No suffix is used when indicating time in seconds

Unless otherwise specified Fixed Delays are available from .05 seconds to 1000 minutes. Consult factory for other

Ex.QMS5130 30 Minutes

## **External Resistance Selection**

On models specified as having the external resistor adjustability feature, the delay period is set by placing resistance across designated pins or terminals. The resistor or potentiometer should be a 1/4 watt or larger. To determine the resistor value required for a specific time delay, use the following formula:

$$R_{\text{ext}} = \frac{T_{\text{des}}}{T_{\text{max}}} \times 1000$$

 $R_{\rm ext}$  = Resistance value required to obtain  $T_{\rm des}$  (in K ohms)  $T_{\rm des}$  = Desired time delay  $T_{\rm max}$  = Maximum delay period of the timer

Example: Using Time Range 3 (3 - 100 seconds), Find the external resistance value required for a 50 second delay:

$$R_{\text{ext}} = \frac{50 \text{ sec.}}{100 \text{ sec.}} \times 1000 = 500 \text{K ohms}$$