
# XSNano Fuel Additive Bench test report of multi cylinder engine

Diesel engine model: 16V480MAN







# China Academy of Railway Sciences Locomotive Car Research Institute Jan. 19<sup>th</sup>, 2021

# XSNano Diesel Saving Additive Test Report of Multi Cylinder Diesel Engine

According to the quality management measures and certification procedures of locomotive energy-saving products, The China Academy of Railway Sciences Locomotive Car Research Institute conducted quality assessment on Xunsn nano fuel additive products provided by Xunsn nanotechnology R & D center. After the energy-saving effect was proved by single cylinder engine bench test, the 1:1 multi cylinder engine energy-saving effect test was conducted at the diesel engine test station of Tangshan Locomotive and rolling stock works.

The test was conducted by The China Academy of Railway Sciences Locomotive Car Research Institute and completed jointly with Tangshan rolling

stock works in January 2021. At the same time, the Institute of energy

conservation and environmental protection of China Academy of Railway

Sciences has done the exhaust emission detection and analysis.

Units and personnel participating in the test:

Technical director: Wang Liqin, Ji Hong, Wang Fengzhu

China Academy of Railway Sciences Locomotive Car Research Institute:

Wang Liqin, Liu Chaoran

Tangshan locomotive rolling stock: Ji Hong, Tang Yongging

Institute of energy conservation and environmental protection of The

China Academy of Railway Sciences: Chen Jing, Li Furong

1, Test method and conditions

The method of comparison was adopted for the test. The diesel engine

which has not been overhauled in Tangshan Locomotive rolling stock works is

tested on the test bench of product quality acceptance according to the

proposed comparative test program for fuel energy saving condition contrast

test.

The data test of diesel engine without additives was carried out first. After

that, the diesel engine was shut down and the additive was added according to

the ratio of 1:10,000.

In the condition comparison test, the output power, fuel consumption and

fuel consumption time are measured and the fuel consumption rate is

calculated under the condition that the control parameters (such as speed,

power, lubricating oil, cooling water temperature, etc.) are consistent as far as

possible, so that the fuel consumption rate reflects the energy saving effect.

2, Test equipment and instruments

I. Diesel engine for test

Machine repair manufacturer: Tangshan Locomotive and rolling stock works

Diesel engine number: DG2388

Diesel engine model: 16V480MAN

Supercharger model: KN660D

II. Power test equipment

Diesel engine loading test bed:

DC voltmeter: 0.5

DC ammeter: 0.5

III. Speed test equipment

Special speed sensor and tachometer for test bench :1.5

IV. Fuel consumption test equipment

Scales: Grade 3 ( $\pm$ 1%)

Stopwatch:  $\pm 0.1$  seconds

V. Atmospheric parameter testing instrument

Barometer: 0.4

Thermometer: 1

VI. Peak pressure gauge test equipment

Peak pressure gauge: 1.5

VII. Pressure and temperature measuring instruments of oil, water and air

Electric thermometer: 1

Pressure gauge: 1

#### 3, Test results

- I. The measured data of test conditions are shown in Schedule 1
- II. See Curve 1 for fuel consumption rate
- III. Diesel engine emission test report

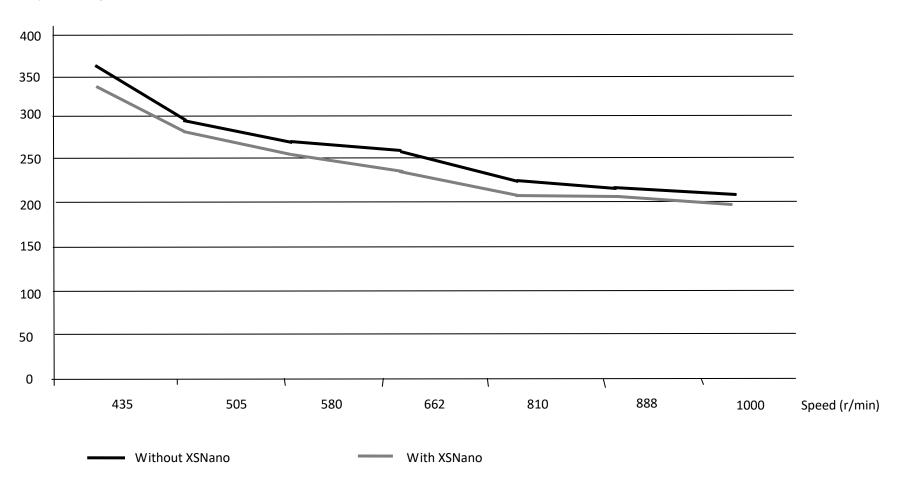
#### 4, Conclusions

- I. Seen from the explosion pressure and exhaust temperature, the thermal state is basically stable.
- II. The energy saving effect of the product is obvious. The fuel consumption of diesel with XSNano additive is significantly lower than that without XSNano.
- III. The harmful components of exhaust gas emission also decrease obviously, which is favorable for environmental protection

Air condition:

No XSNano: Temperature 29.2°C Atmospheric pressure 746.5mmHg XSNano added: Temperature 28.6 °C Atmospheric pressure 746.0mmHg

## Test data sheet of XSNano fuel additive multi cylinder machine


| Speed | Power   | Outlet<br>temp of<br>high-temp<br>water | Outlet temp of lubricating oil | Outlet<br>temp of<br>low-temp<br>water | Average<br>temp of<br>intake air<br>(after<br>inter<br>cooling)                    | Average pressure of intake air (after inter cooling) | Average temp of exhaust pipe | peak<br>pressure | Fuel<br>consumption<br>rate | Additive | Fuel<br>consumption<br>reduction<br>rate |  |
|-------|---------|-----------------------------------------|--------------------------------|----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|------------------|-----------------------------|----------|------------------------------------------|--|
| rpm   | KW      | $^{\circ}$                              | $^{\circ}\!\mathbb{C}$         | ${\mathbb C}$                          | $^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Мра                                                  | $^{\circ}\!\mathbb{C}$       | Мра              | g/kwh                       |          | %                                        |  |
| 435   | 134.40  | 59.4                                    | 59.7                           | 33.0                                   | 26.0                                                                               | 0.003                                                | 156                          | 4.70             | 364.18                      | NO       | 7.05                                     |  |
| 430   | 138.60  | 59.3                                    | 59.0                           | 33.0                                   | 31.5                                                                               | 0.000                                                | 159                          | 4.64             | 338.51                      | YES      |                                          |  |
| 507   | 284.00  | 67.3                                    | 62.1                           | 37.2                                   | 28.1                                                                               | 0.000                                                | 224                          | 5.29             | 298.26                      | NO       | 7.20                                     |  |
| 505   | 293.30  | 67.0                                    | 62.0                           | 37.2                                   | 28.7                                                                               | 0.000                                                | 206                          | 5.36             | 276.78                      | YES      | 7.20                                     |  |
| 585   | 427.51  | 67.0                                    | 66.7                           | 40.0                                   | 29.7                                                                               | 0.002                                                | 276                          | 5.69             | 274.32                      | NO       | 8.30                                     |  |
| 580   | 438.60  | 67.0                                    | 66.0                           | 40.0                                   | 29.7                                                                               | 0.002                                                | 255                          | 5.68             | 251.55                      | YES      | 6.30                                     |  |
| 662   | 758.72  | 69.0                                    | 70.3                           | 42.0                                   | 31.6                                                                               | 0.011                                                | 323                          | 7.05             | 264.19                      | NO       | 9.90                                     |  |
| 660   | 769.32  | 70.0                                    | 70.0                           | 42.0                                   | 32.2                                                                               | 0.011                                                | 323                          | 7.04             | 238.03                      | YES      | 9.90                                     |  |
| 809   | 1446.42 | 69.0                                    | 69.8                           | 47.3                                   | 39.4                                                                               | 0.054                                                | 341                          | 9.29             | 230.93                      | NO       | 10.70                                    |  |
| 810   | 1462.13 | 69.0                                    | 69.0                           | 47.0                                   | 40.0                                                                               | 0.053                                                | 347                          | 9.17             | 206.22                      | YES      | 10.70                                    |  |
| 888   | 1906.37 | 67.4                                    | 72.8                           | 50.0                                   | 40.1                                                                               | 0.098                                                | 346                          | 10.68            | 225.61                      | NO       | 11.10                                    |  |
| 890   | 1949.45 | 67.5                                    | 72.0                           | 52.0                                   | 41.5                                                                               | 0.098                                                | 348                          | 10.56            | 200.56                      | YES      | 11.10                                    |  |
| 1000  | 2402.83 | 69.2                                    | 76.6                           | 54.0                                   | 46.9                                                                               | 0.150                                                | 358                          | 11.70            | 223.72                      | NO       | 10.90                                    |  |
| 1000  | 2463.71 | 69.2                                    | 75.0                           | 55.0                                   | 47.0                                                                               | 0.150                                                | 355                          | 11.57            | 199.33                      | YES      | 10.30                                    |  |

Conclusions: 1. Seen from the explosion pressure and exhaust temperature, the thermal state is basically stable.

2. Through test and comparison, the energy saving effect of XSNano additive is obvious.

## **Fuel consumption curve**

Fuel consumption rate(g/kwh)



### Test report of diesel engine emission

Test instrument: KNOS-60 NOX analyzer, UREX-311 CO and HC analyzer

Date: Jan. 15<sup>th</sup> -18<sup>th</sup>, 2021

Standard basis: GB/T8190.0-2020 Place: Tangshan Locomotive rolling stock works

Test sample: XSNano diesel saving additive

Tester: Chen Jing

| N               | No. | Speed r/min |         | Fuel<br>consumption<br>kg/h | Air<br>consumption<br>kg/h | Intake<br>TEMP | Intake<br>humidity% | Dry / wet<br>correction<br>factor | NO <sub>X</sub><br>correction<br>factor | Measured value ppm |     |    | Specific emission g/(kw.h) |      |       |
|-----------------|-----|-------------|---------|-----------------------------|----------------------------|----------------|---------------------|-----------------------------------|-----------------------------------------|--------------------|-----|----|----------------------------|------|-------|
|                 |     | ,,,,,,,,,   |         |                             |                            |                |                     |                                   |                                         | NO <sub>X</sub>    | СО  | НС | NO <sub>X</sub>            | СО   | НС    |
| No<br>XSNano    | 1   | 809         | 1446.72 | 336.45                      | 12240                      | 29.0           | 58.0                | 0.9258                            | 1.058                                   | 1950               | 800 | 19 | 26.34                      | 6.22 | 0.073 |
|                 | 2   | 88          | 1906.37 | 428.42                      | 15984                      | 29.4           | 56.8                | 0.9266                            | 1.056                                   | 1680               | 600 | 17 | 20.86                      | 4.62 | 0.065 |
|                 | 3   | 1000        | 2408.83 | 531.52                      | 23256                      | 29.7           | 52.8                | 0.9354                            | 0.9972                                  | 1390               | 300 | 14 | 19.73                      | 2.68 | 0.062 |
| XSNano<br>added | 1   | 810         | 1446.72 | 330.85                      | 12240                      | 27.9           | 60.7                | 0.9267                            | 1.064                                   | 1810               | 800 | 17 | 24.51                      | 6.22 | 0.061 |
|                 | 2   | 890         | 1899.45 | 419.89                      | 15984                      | 28.9           | 56.6                | 0.9283                            | 1.056                                   | 1420               | 400 | 13 | 19.42                      | 3.10 | 0.046 |
|                 | 3   | 1000        | 2408.83 | 518.28                      | 23256                      | 28.7           | 56.2                | 0.9362                            | 1.052                                   | 1150               | 200 | 11 | 17.98                      | 1.79 | 0.041 |

Conclusions: 1.The result of HC test is low because the pipeline is not insulated, so it is only for relative comparison.

2. After adding XSNano, except for the improvement of CO emission at 810 r/min, NOx, CO and HC emission in other working conditions decreased significantly