filabot

Material Extrusion Report

In House Testing.

Test Technician: Jack Simpson

Test Number: ET201014JS01, ET2001014JS02 (Spool 1 & Spool 2) & ET201015JS03 (Spool 1).

Plastic Name: LX175

Plastic Grade: PLA

Manufacturer: Independent Plastics

Supplier: Filabot.

Additives: Not Applicable.

Material Form: Round Pellets, hard, white, small.

Machine Used: EX2.

Extrusion Test Notes

Material preparation: Drying.

Grinding: Not Applicable.

Drying: Yes, 175F/80C for 4 hours.

Extrusion Setup: Test Number: ET201014JS01

EX2

- Temp: 165C
- Speed: 90%
- Fan: Closed
- Standard Nozzle 1.75mm

Extrusion Setup: Test Number: ET201014JS02 EX2

- Temp: 167.5C
- Speed: 90%
- Fan: Closed
- Standard Melt Filter Nozzle 2.3mm

filabot

Extrusion Setup: Test Number: ET201015JS03 EX2

- Temp: 175C
- Speed: 90%
- Fan: Closed
- 2X Melt Filter Nozzle 1.75mm

*Airpath

• With Magnet Guides (5)

Spooler

- Drive Speed: Mid
- Traverse Speed: (4)
- Filameasur with SPC unit.

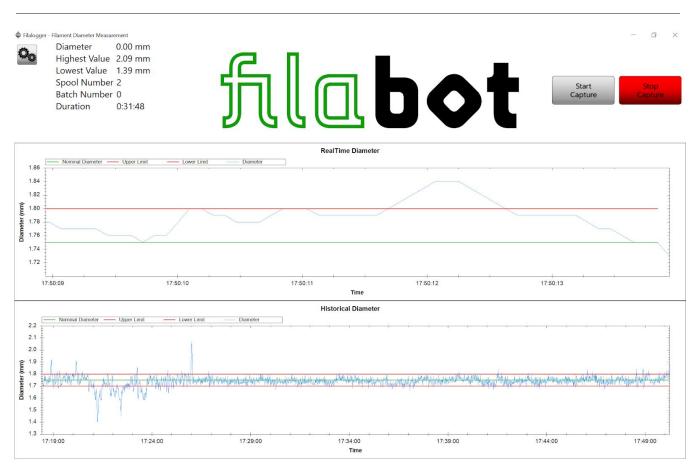
*Airpath was 1in away from the EX2 nozzle. The Airpath and Spooler were 18inches apart. For all tests.

Extrusion Results:

With the above settings 1pt75mm filament with a tolerance of +/- 0.05mm was generated. The first test with the Standard Nozzle and the second test with the Standard Melt Filter provided the best results for filament production.

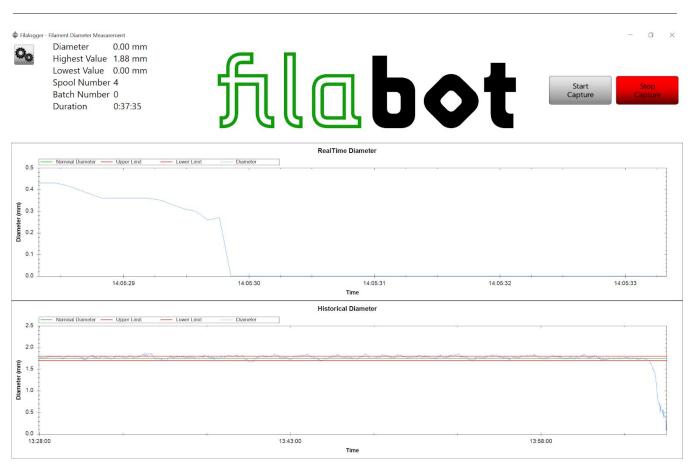
Notes on EX2: Machine was more than capable of extruding the material once in the correct range. The material flowed without issue and was very easy to clean.

Notes on Cleanup: It is very important that the material has been completely purged from the EX2 before using a lower temperature polymer. Failure to do so will result in inconsistent filament.


Further Research: Next steps will be taken to see how this polymer performs at 2.85mm with a +/-0.05mm tolerance; then we will test this polymer with different additives for compatibility. Same steps will be provided for EX6 performance.

filabot

Graphs							
Filalogger	Filament Diameter Measurement Diameter 0.00 mm Highest Value 1.86 mm Lowest Value 0.00 mm Spool Number 2 Batch Number 0 Duration 1:06:45	坈	lla	Ь	ot	Start Capture	- G X
			RealTime D	liameter			
1.0	- Nominal Dameter - Upper Limit	Lower Limit Diameter		· · · ·			
-0.5	15:52:11	1	5.52:12 Ti Historical D	15:52:13 me	15:52:14	i i	15:52:15
2.5	- Nominal Diameter Upper Limit	- Lower Limit - Diameter		,			
2.0 (IIII) 1.5 1.0 0.5	<u>1995 - Maria Maria, Briston, Angelon, Ang</u>	ν ματο (γρ. μοτιδιάτρας παριή του συμουποριορισμου		anga iyo kubu daga ka d	n	gerande fan de fan d	×
0.0 ±+ 14:46	:00	15:01:00	i 15:16:00 Tir	ne	15:31:00	i i 15:46:00	<u> </u>


Graph 1: Test ET201014JS01_STNozzle. Was able to run consistently for 1hour within spec of 1.75mm. The time stamp '14:46:00' to '14:48:00' was before the material was on the spool. Tick marker '15:48:00' was when the test concluded.

filabot

Graph 2: Test ET201014JS02_STMFNozzle. Was able to run consistently for 30min within spec of 1.75mm before concluding the test. The time stamp '17:19:00' to '17:24:00' was us tuning the drive of the spooler once the polymer was on the spool. Tick marker '17:26:00' can be noted that there was a high peek of 2.09mm. When testing we could not identify the marker on the filament.

filabot

Graph 2: Test ET201015JS03_2XMFNozzle. Was able to run consistently for 30min within spec of 1.75mm before concluding the test. The time stamp '13:58:00' to 'the end' was the end of the testing/removal of spool.

Further Research

Although the polymer worked, the next steps to find improvements would be the use of a standard melt filter nozzle to see if this could generate a tighter tolerance filament.