

STRAIGHT HEMP

CERTIFICATE OF ANALYSIS

PRODUCT: BATCH/LOT:	Straight Hemp VA018	Vape Oil		PRODUCTION DATE: BEST BY/EXP DATE:	4/2021 4/2023
INGREDIENTS: ADDITIVES: EXCIPIENTS:	Full Spectrum H none none	Hemp Extracts, Terpen	e Blend (Hemp-derived)	
TEST		METHOD	SPECIFICATION	RESU	TS
Strength & Compositic Total Cannabidiol Total minor canna <u>Total Tetrahydroc</u> Total Cannabinoid Terpene assay ⁱⁱⁱ	(CBD) ⁱ Ibinoids annabinol (THC) ⁱⁱ	UPLC/UV UPLC/UV UPLC/UV UPLC/UV HS-GC/MS	48 – 58% n/e <u>NMT 0.3%</u> n/e n/e	48.43 11.34 0.23 60.00 12.92	% <u>%</u> %
Microbiological ^{iv} Aspergillus STEC E. coli Salmonella Listeria		Micro Array Micro Array Micro Array qPCR	Absent Absent Absent Absent	PASS PASS PASS PASS	
Mycotoxins Alfatoxin B1 Alfatoxin B2 Alfatoxin G1 Alfatoxin G2 Ochratoxin		LCMS LCMS LCMS LCMS LCMS	NMT 20 ppb NMT 20 ppb NMT 20 ppb NMT 20 ppb NMT 20 ppb	<6 pp <6 pp <6 pp <6 pp <12 p	b b b

ⁱ Total CBD = CBD + (0.877*CBDa) to account for loss of acid group during decarboxylation

" Total THC = THC + (0.877*THCa) to account for loss of acid group during decarboxylation

iii Sum of terpene assay (n=22)

^{iv} Microbiological limits based on USP, WHO, and/or NSF/ANSI.

NMT = Not More Than MRL = Method Reporting Limit n/e = not established

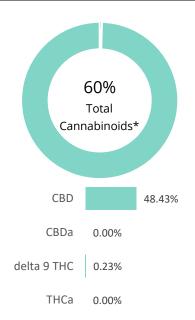
STRAIGHT HEMP

CERTIFICATE OF ANALYSIS

PRODUCT: BATCH/LOT:	Straight Her VA018	np Vape Oil		RODUCTION DATE: 4/2021 EST BY/EXP DATE: 4/2023
INGREDIENTS: ADDITIVES: EXCIPIENTS:	Full Spectru none none	m Hemp Extracts, Terpene	e Blend (Hemp-derived)	
TEST		METHOD	SPECIFICATION	RESULTS
Heavy Metals ^v				
Arsenic (As)		ICP/MS	NMT 0.2 ppm	PASS
Cadmium (Cd)		ICP/MS	NMT 0.2 ppm	PASS
Lead (Pb)		ICP/MS	NMT 0.5 ppm	PASS
Mercury (Hg)		ICP/MS	NMT 0.1 ppm	PASS
Residual Solvents				
Multi-residue pan	el	GC-HS-MSD	Below CCR Limits ^{vi}	PASS
Pesticides				
Multi-residue pan	el	UPLC-MS/MS	Below MRL ^{vii}	PASS
Other compounds				
Vitamin E Acetate		LC-MS	Absent	PASS
Diacetyl (2,3-buta		GCMS	Absent	PASS
\times				This be
()	$\langle -$			5/14/21
				Date
David Cole Birector of Quality) / / / / Date

 ^v Limits for As and Pb set below CA Prop 65 no significant risk level; Cd and Hg set below USP permitted daily exposure for 110lb body weight. Complies with 1 CCR 212-3
 ^{vi} 21 solvent panel includes: Propane, Butanes, Methanol, Pentane, Ethanol, Acetone, Isopropyl Alcohol, Hexane, Benzene, Heptanes, Toluene, Xylenes. Individual limits: 1 CCR 212-3

vii 67 residue panel


prepared for: Straight Hemp

5135 W 58th Ave, Unit 5 Arvada, CO 80002

Vape Oil

I			
Batch ID:	VA018	Test ID:	T000137216
Туре:	Concentrate	Submitted:	04/27/2021 @ 09:27 AM
Test:	Potency	Started:	4/28/2021
Method:	TM14	Reported:	4/29/2021

CANNABINOID PROFILE

Compound	LOQ (%)	Result (%)	Result (mg/g)
Delta 9-Tetrahydrocannabinolic acid (THCA-A)	0.06	ND	ND
Delta 9-Tetrahydrocannabinol (Delta 9THC)	0.07	0.23	2.3
Cannabidiolic acid (CBDA)	0.07	ND	ND
Cannabidiol (CBD)	0.07	48.43	484.3
Delta 8-Tetrahydrocannabinol (Delta 8THC)	0.08	ND	ND
Cannabinolic Acid (CBNA)	0.05	ND	ND
Cannabinol (CBN)	0.02	0.37	3.7
Cannabigerolic acid (CBGA)	0.07	ND	ND
Cannabigerol (CBG)	0.02	7.97	79.7
Tetrahydrocannabivarinic Acid (THCVA)	0.06	ND	ND
Tetrahydrocannabivarin (THCV)	0.01	ND	ND
Cannabidivarinic Acid (CBDVA)	0.03	ND	ND
Cannabidivarin (CBDV)	0.02	2.87	28.7
Cannabichromenic Acid (CBCA)	0.03	ND	ND
Cannabichromene (CBC)	0.03	0.13	1.3
Total Cannabinoids		60.00	600.0
Total Potential THC**		0.23	2.3
Total Potential CBD**		48.43	484.3

% = % (w/w) = Percent (Weight of Analyte / Weight of Product) * Total Cannabinoids result reflects the absolute sum of all

 rotal cannabinoids result reflects the absolute sum of cannabinoids detected.

** Total Potential THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during

decarboxylation step.

Total THC = THC + (THCa *(0.877)) and Total CBD = CBD + (CBDa *(0.877))

ND = None Detected (Defined by Dynamic Range of the method)

FINAL APPROVAL

	/		11.111.111
Tork		B	D
	×,	/~~	L

PREPARED BY / DATE

Tavlor Brevik 29-Apr-2021 2:49 PM

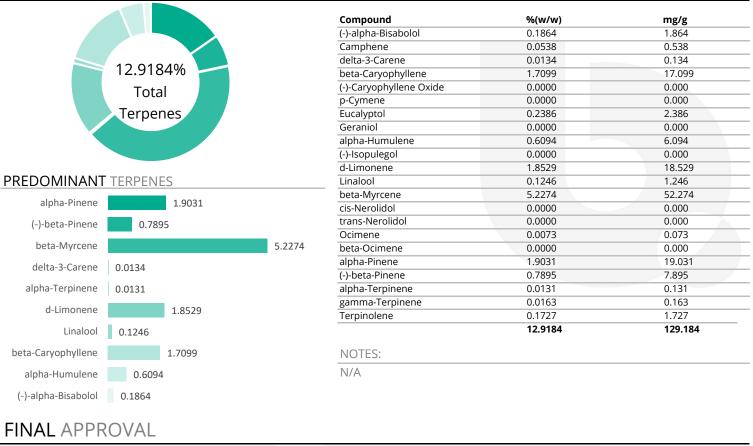
Danuel Westersaul

Daniel Weidensaul 29-Apr-2021 2:50 PM

APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Laboratories, LLC, in the condition it was received. Botanacor Laboratories, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Laboratories, LLC. ISO/IEC 17025:2005 Accredited A2LA Certificate Number 4329.02

NOTES:

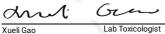

N/A

prepared for: Straight Hemp 5135 W 58th Ave, Unit 5 Arvada, CO 80002

Vape Oil			
Batch ID:	VA018	Test ID:	T000137217
Туре:	Concentrate	Submitted:	04/27/2021 @ 09:27 AM
Test:	Terpenes	Started:	4/29/2021
Method:	TM22	Reported:	4/30/2021

TERPENE PROFILE

PREPARED BY / DATE

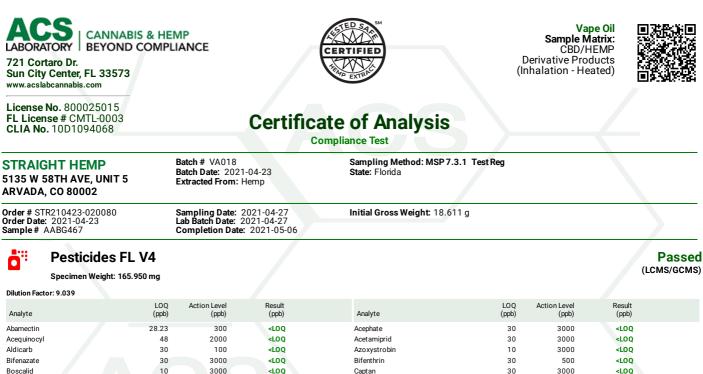

APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Laboratories, LLC. Botanacor Laboratories, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Laboratories, LLC. ISO/IEC 17025:2005 Accredited A2LA Certificate Number 4329.02

Botanacor Laboratories™, All Rights Reserved | 1301 S Jason St Unit K, Denver, CO 80223 | 888.800.8223 | www.botanacor.com

721 Cor Sun City www.acsla License FL Licen	CANNAB BEYOND taro Dr. Center, FL 33573 abcannabis.com No. 800025015 nse # CMTL-0003 0. 10D1094068				CERTIFIED		Va Sample N CBD/I Derivative Pro Inalation - He	HEMP	
5135 W 5	GHT HEMP 58TH AVE, UNIT 5 , CO 80002	E	Batch # VA018 Batch Date: 2021 Extracted From: ⊢	-04-23	Sampling Method: MSP 7.3 State: Florida	1 Test Reg			
	R210423-020080 : 2021-04-23 AABG467	L	Sampling Date: 2 ab Batch Date: 2 Completion Date:	021-04-27	Initial Gross Weight: 18.61	g			
H	Heavy Metals Specimen Weight: 249.								Passed (ICP-MS)
Dilution Fact	tor: 2.000	LOQ	Action Level	Result		LOQ	Action Level	Result	
Analyte Arsenic (As)		(ppb) 100	(ppb) 1500	(ppb) <loq< td=""><td>Analyte Cadmium (Cd)</td><td>(ppb) 100</td><td>(ppb) 500</td><td>(ppb) <loq< td=""><td></td></loq<></td></loq<>	Analyte Cadmium (Cd)	(ppb) 100	(ppb) 500	(ppb) <loq< td=""><td></td></loq<>	
Lead (Pb)		100	500	<loq< td=""><td>Mercury (Hg)</td><td>100</td><td>3000</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	100	3000	<loq< td=""><td></td></loq<>	
Dilution Fact	2,3-butanedic Specimen Weight: 9.30	•	cetyl)						Passed (GCMS)
Analyte		LOQ (ppm)	Result (ppm)						
2,3-Butaned	ione	0.024	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td></loq<>						
₩ *	Mycotoxins								Passed
	Specimen Weight: 165.	950 mg							(LCINS)
Dilution Fact	tor: 9.039	LOQ	Action Level	Result		LOQ	Action Level	Result	
Analyte Aflatoxin B1		(ppb) 6	(ppb) 20	(ppb) <loq< td=""><td>Analyte Aflatoxin B2</td><td>(ppb) 6</td><td>(ppb) 20</td><td>(ppb) <loq< td=""><td></td></loq<></td></loq<>	Analyte Aflatoxin B2	(ppb) 6	(ppb) 20	(ppb) <loq< td=""><td></td></loq<>	
Aflatoxin G1 Ochratoxin A		6 12	20 20 20	<l0q <l0q <l0q< td=""><td>Aflatoxin G2</td><td>6</td><td>20</td><td><loq< td=""><td></td></loq<></td></l0q<></l0q </l0q 	Aflatoxin G2	6	20	<loq< td=""><td></td></loq<>	

120 `s Aixia Sun Lab Director/Principal Scientist


D.H.Sc., M.Sc., B.Sc., MT (AAB)

Xueli Gao Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBG Total + CBC Total + THC Total + CBC + CBDV + THCV + THCV-A, *Inabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detections unless specified as 12% moisture concentration. (mg/m) = Milligram per Milligram (DD = Limit of Detection, Dilution = Dilution Teator (pb) = Parts per Million, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (%) = Milligram per Kilogram , *Measurement of Uncertainty = +/-5%

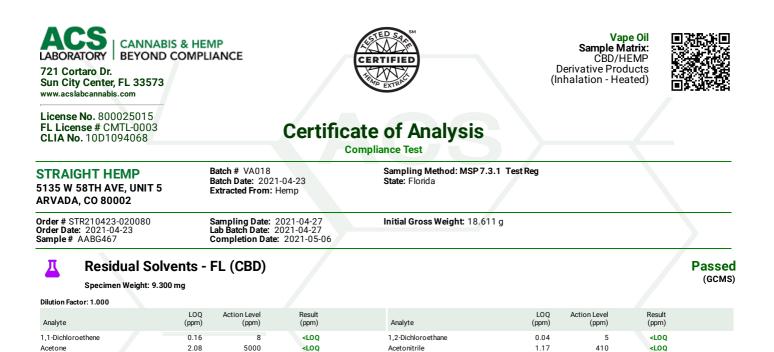
This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Aluicalb	30	100	-LOQ	AZOXYSTIODIII	10	3000	LUQ
Bifenazate	30	3000	<loq< td=""><td>Bifenthrin</td><td>30</td><td>500</td><td><loq< td=""></loq<></td></loq<>	Bifenthrin	30	500	<loq< td=""></loq<>
Boscalid	10	3000	<loq< td=""><td>Captan</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Captan	30	3000	<loq< td=""></loq<>
Carbaryl	10	500	<loq< td=""><td>Carbofuran</td><td>10</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Carbofuran	10	100	<loq< td=""></loq<>
Chlorantraniliprole	10	3000	<loq< td=""><td>Chlordane</td><td>10</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Chlordane	10	100	<loq< td=""></loq<>
Chlorfenapyr	30	100	<loq< td=""><td>Chlormequat Chloride</td><td>10</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Chlormequat Chloride	10	3000	<loq< td=""></loq<>
Chlorpyrifos	30	100	<loq< td=""><td>Clofentezine</td><td>30</td><td>500</td><td><loq< td=""></loq<></td></loq<>	Clofentezine	30	500	<loq< td=""></loq<>
Coumaphos	48	100	<loq< td=""><td>Cyfluthrin</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></loq<>	Cyfluthrin	30	1000	<loq< td=""></loq<>
Cypermethrin	30	1000	<loq< td=""><td>Daminozide</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Daminozide	30	100	<loq< td=""></loq<>
Diazinon	30	200	<loq< td=""><td>Dichlorvos</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Dichlorvos	30	100	<loq< td=""></loq<>
Dimethoate	30	100	<loq< td=""><td>Dimethomorph</td><td>48</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Dimethomorph	48	3000	<loq< td=""></loq<>
Ethoprophos	30	100	<loq< td=""><td>Etofenprox</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Etofenprox	30	100	<loq< td=""></loq<>
Etoxazole	30	1500	<loq< td=""><td>Fenhexamid</td><td>10</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Fenhexamid	10	3000	<loq< td=""></loq<>
Fenoxycarb	30	100	<loq< td=""><td>Fenpyroximate</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Fenpyroximate	30	2000	<loq< td=""></loq<>
Fipronil	30	100	<loq< td=""><td>Flonicamid</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Flonicamid	30	2000	<loq< td=""></loq<>
Fludioxonil	48	3000	<loq< td=""><td>Hexythiazox</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Hexythiazox	30	2000	<loq< td=""></loq<>
Imazalil	30	100	<loq< td=""><td>Imidacloprid</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Imidacloprid	30	3000	<loq< td=""></loq<>
Kresoxim Methyl	30	1000	<loq< td=""><td>Malathion</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Malathion	30	2000	<loq< td=""></loq<>
Metalaxyl	10	3000	<loq< td=""><td>Methiocarb</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Methiocarb	30	100	<loq< td=""></loq<>
Methomyl	30	100	<loq< td=""><td>methyl-Parathion</td><td>10</td><td>100</td><td><loq< td=""></loq<></td></loq<>	methyl-Parathion	10	100	<loq< td=""></loq<>
Mevinphos	10	100	<loq< td=""><td>Myclobutanil</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Myclobutanil	30	3000	<loq< td=""></loq<>
Naled	30	500	<loq< td=""><td>Oxamyl</td><td>30</td><td>500</td><td><loq< td=""></loq<></td></loq<>	Oxamyl	30	500	<loq< td=""></loq<>
Paclobutrazol	30	100	<loq< td=""><td>Pentachloronitrobenzene</td><td>10</td><td>200</td><td><loq< td=""></loq<></td></loq<>	Pentachloronitrobenzene	10	200	<loq< td=""></loq<>
Permethrin	30	1000	<loq< td=""><td>Phosmet</td><td>30</td><td>200</td><td><loq< td=""></loq<></td></loq<>	Phosmet	30	200	<loq< td=""></loq<>
Piperonylbutoxide	30	3000	<loq< td=""><td>Prallethrin</td><td>30</td><td>400</td><td><loq< td=""></loq<></td></loq<>	Prallethrin	30	400	<loq< td=""></loq<>
Propiconazole	30	1000	<loq< td=""><td>Propoxur</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Propoxur	30	100	<loq< td=""></loq<>
Pyrethrins	30	1000	<loq< td=""><td>Pyridaben</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Pyridaben	30	3000	<loq< td=""></loq<>
Spinetoram	10	3000	<loq< td=""><td>Spino sad</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Spino sad	30	3000	<loq< td=""></loq<>
Spiromesifen	30	3000	<loq< td=""><td>Spirotetramat</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Spirotetramat	30	3000	<loq< td=""></loq<>
Spiroxamine	30	100	<loq< td=""><td>Tebuconazole</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></loq<>	Tebuconazole	30	1000	<loq< td=""></loq<>
Thiacloprid	30	100	<loq< td=""><td>Thiamethoxam</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></loq<>	Thiamethoxam	30	1000	<loq< td=""></loq<>
Trifloxystrobin	30	3000	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				

G drit 1 Xueli Gao

Ph.D. DART

Lab Toxicologist


Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/mg) = Milligrams per Milliter, LOD = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/-5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 6

Butanes

Ethanol

Heptane

Propane

Total Xylenes

Ethyl Ether

Isopropyl alcohol

Methylene chloride

2.5

2.78

1.39

1 3 9

1.39

2.43

5.83

2.92

2000

5000

5000

5000

500

600

2100

2170

<LOQ

<LOQ

<LOQ

<100

<L0Q

<LOQ

<LOQ

<LOQ

<LOQ

<LOQ

<LOQ

<100

<LOQ

<LOQ

<LOQ

<LOQ

<LOQ

Lab Director/Principal Scientist

60

5

5000

290

3000

5000

890

80

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliter, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/-5% This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

drit G Lab Toxicologist Xueli Gao Ph.D. DART

Benzene

Hexane

Methanol

Pentane

Toluene

Chloroform

Ethyl Acetate

Ethvlene Oxide

Trichloroethylene

0.02

0.04

1.11

01

1.17

0.69

2.08

2.92

0.49

-

Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	Certifi	cate of Analysis	5	
STRAIGHT HEMP	Batch # VA018 Batch Date: 2021-04-23 Extracted From: Hemp	Compliance Test Sampling Method: MSP State: Florida	7.3.1 Test Reg	
RVADA, CO 80002	Sampling Date: 2021-04-27 Lab Batch Date: 2021-04-27 Completion Date: 2021-05-06	Initial Gross Weight: 18	.611 g	
Pathogenic Mic	crobiology SAE (MicroArra	ay)		Passe (Micro Arra
Dilution Factor: 1.000	ong			
Analyte	Result (cfu/g)	Analyte	Result (cfu/g)	
Aspergillus flavus Absenc Aspergillus niger Absenc Salmonella Absenc	ce in 1g	Aspergillus fumigatus Aspergillus terreus STEC E. Coli	Absence in 1g Absence in 1g Absence in 1g	
Listeria Monoc				Passe
Specimen Weight: 1026.74 Dilution Factor: 1.000	0 mg			
Actio	n Level (cfu/g) Result			
Listeria Monocytogenes	1 Absence in 1 g			
mat: Gu	~ Aini-			
Mont Con ueli Gao h.D., DABT		Scientist		S

Specimen Weight: N/A						
SW SSTI TALE, UNIT 5 Batch Date: 2021-04-23 State: Florida SW SSTI AC, UNIT 5 Sampling Dat: 2021-04-23 Initial Gross Weight 18.611 g SW SSTI AC, UNIT 5 Sampling Dat: 2021-04-27 Initial Gross Weight 18.611 g Sections Weight: NA Sections Weight: NA	FL Licen	se # CMTL-0003				
mplet 4 A68647 Vitamin E (Tocopheryl Acetate) Specimen Weight: NA Termin 5 Acetate I 0 400 ACCS ACCS ACCS ACCS ACCS ACCS ACCS A	5135 W 5	BTH AVE, UNIT 5	Ba	tch Date: 2021-04-23		
specimer Weight K/A raine & Acetate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Order Date:	2021-04-23	Sa Lai Co	mpling Date: 2021-04-27 b Batch Date: 2021-04-27 ompletion Date: 2021-05-06	Initial Gross Weight: 18.611 g	
naint E Acetare 10 10 100	E		cophery	l Acetate)		Pass (LC-M
ACS	Analyte	- , ,	LOQ (ppb)			
ACS ACS ACS	Vitamin E Ace	tate	10	<loq< th=""><th></th><th></th></loq<>		
ACS ACS ACS						
ACS						
ACS						
ACS Mut an Amiz						
ACS Mut can Amiz						
ACS Mut an Amis						
ACS Mi Gu Ami =						
ACS MA Gu Amia						
Mut an Ami =						
Mi an Amia						
Mut an Ami-						
mit an Ami-						
mit can Ami =						
mut an Ami-						
mut our Aini =						
mut our pini-						
mi com pini =						
mut Gran Ainci =						
muli Gran Ainci =						
eli Gao Lab Toxicologist Aixia Sun Lab Director/Principal Scientist		Л. Ст.е	~~	Mini-		
				Minicipal Sci ixia Sun Lab Director/Principal Sci	AC	
Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCAA* 0.877 + Deita 9 THC, *CBG Total = CBCA* CBC + CBD + CHCAA *Total THC = THCAA* 0.877 + Deita 9 THC, *CBG Total = CBCA* CBC + CBD + CHCAA *Total Detected Canabinoids = CBD total + CBC + CBD + VHCV = THCV = THCAA* CBC + CBD + CHCAA *Total Detected Canabinoids = CBC + CBD + VHCV = THCVAA *Total Detected Canabinoids = CBD Total + CBC + CBD + VHCV = THCVAA *Total + CBC + CBD + CHCAA * Total + CBC +	-		ologist A		entist	S
PJLA Testing This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or pro analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testin	Cueli Gao Ph.D., DABT		cologist A D. D. CB To CCB CB To CCB	H.Sc., M.Sc., B.Sc., MT (AAB) efinitions and Abbreviations used in this reg 65, *CBN Total = (CBNA * 0.877) + CBN, *i tal + THC Total + CBC + CBDV + THCV + TH g/mi) = Milligrams per Milliliter, LOQ = Li John Forming Unit per Gram (cfu/q) = Cold	ort: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Dr Dther Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected C ICV-A, *Analyte Details above show the Dry Weight Concentrations unless spe nit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) ny Forming Unit per Gram, LDD = Limit of Detection, (uq/q) = Microqram p	annabinoids = CBD Total + CBG Total + CE cified as 12% moisture concentration. = Parts per Billion, (%) = Percent, (cfu/g)