

20 to 24 hours to complete.

14 quizzes plus practice exercises Final test 100 questions Passing mark on final test = 70%

#### COURSE DESCRIPTION

Explore building science and its importance to constructing effective building envelopes and building durable homes. Construction Technology is made up of 14 modules that cover the following topics:

- 1. Introduction to Construction Technology
- 2. Building Components
- 3. Moisture Management
- 4. House as a System
- 5. Indoor Air Quality
- 6. Healthy Housing
- 7. Fundamentals of Air Sealing

- 8. Strategies for Air Sealing
- 9. Fundamentals of Insulation
- 10. Strategies for Insulation
- 11. Fundamentals of Windows and Doors
- 12. Fundamentals of Energy
- 13. Mechanical Systems Overview
- 14. Ventilation Requirements

Each module includes a downloadable study guide to accompany the online learning program. There is a review and quiz at the end of each module to help you gauge your understanding of the topics covered.

# **Objectives**

After completing this course, you will be able to:

- Apply the House as a System Concept
- Interpret the role of sustainable development in construction
- Understand how building science affects building durability and occupant comfort
- Categorize the signs, symptoms and solutions for good indoor air quality
- Describe building envelope details
- Identify how the control or contribute to heat, air, and moisture flows
- Distinguish between mechanical systems



## **COURSE OUTLINE**

# Module 1: What is Construction Technology?

#### Construction Technology

Introduction

#### **Building Science**

House As A System

#### Sustainability

Energy Efficiency Resource Efficiency Environmental Responsibility

# Module 2: Building Components & Systems

#### **Foundations**

Basement Types Crawlspace Slab On Grade

#### Walls & Floors

Framed Walls Masonry Walls Floor Systems Panelized Systems Roof System Types

# Module 3: Moisture Management

# Keeping Moisture Off, Out, and Away

Foundations Walls Roofs

# Module 4: House As A System

#### Heat Flow

Convection Conduction Radiation

#### Air Flow

Wind Effect
Stack Effect
Combustion/
Ventilation Effect
Neutral Pressure Plane

#### Moisture Flow

Humidity Liquid Water Water Vapour

# Module 5: Indoor Air Quality

#### Sources

Airborne Moisture-Related

#### Symptoms

Occupant House Structure

#### Solutions

Eliminate Filtrate Ventilate

# Module 6: Healthy Housing

#### **Materials**

Construction Assembly Finishes

### Combustion Spillage

Signs Risks Remediation

#### Radon

Identifying Testing Controlling



## **COURSE OUTLINE**

# Module 7: Fundamentals of Air Sealing

#### Purpose of Air Sealing

#### Types of Barriers

Weather Barriers Air Barriers Vapour Barriers

#### **Approaches**

Interior Air Barriers Exterior Air Barriers

#### Air Sealing Materials

# Module 8: Strategies for Air Sealing

#### Air Sealing Issues

Thermal Bypasses Solar Vapour Drive Ice Damming

Foundations
Walls & Floors
Ceilings & Roofs

# Module 9: Fundamentals of Insulation

#### Properties of Insulation

Dew Point Wind Washing

#### R-value

Nominal R-Value Effective R-value

#### Insulation Materials

Fibrous Types Foam Types

# Module 10: Strategies for Insulating

#### Below Grade

Slabs Walls

#### Above Grade

Rim Joists Walls Exposed Floors

#### Ceilings

Flat Ceilings Sloped Ceilings

# Module 11: Fundamentals of Windows & Doors

#### Window & Door Anatomy

#### Comfort Factors

Radiation Solar Gain Convection Wind Washing Conduction

#### Window Performance

Solar Heat Gain Coefficient Visible Transmittance U-Values Glazing Emissivity Gas fills Insulating Spacers Frames

#### Doors



## **COURSE OUTLINE**

# Module 12: Fundamentals of Energy

#### Occupant Comfort

Degree Days Mechanical Systems F-280 Standard

#### Fuel & Energy Sources

Energy Terms Combustion Fuels Electricity

#### Heat Loss/Heat Gain

F-280 Requirements
Winter Design Conditions
Heat Loss Calculation
Sensible & Latent Heat Gain
Summer Design Conditions

# Module 13: Mechanical Systems Overview

#### Space Heating

Furnaces
Boilers
Electric Resistance
Heat Pumps
Integrated Mechanical
Systems
Efficiency & Performance

### Space Cooling

Types of Air Conditioners
Efficiency and Performance

## Delivery Systems

Forced Air Hydronic Controls

# Module 14: Ventilation Requirements

#### Why Ventilate?

Controlling Air Flow Air Filtration Occupant Impacts

#### F-326 Standard

Room Count Ventilation Capacity Depressurization

#### Systems

Exhaust Only
Supply Only
Balanced Whole House