
Breaking down User
Stories
Sam Feller 
awkwardengineer.com

Backlog Sprint

Notes

Every book on scrum I’ve ever seen has a backlog
that looks something like this... big stories that get
neatly broken down as the approach the top.

Then they get picked off and put into the sprint.

Real Life Backlog

Notes

But in real life, most teams I’ve worked with had a
back log that looked like this.  

Stories are wildly different sizes, and then what
happens is there’s no prioritization. New stuff gets
added to the front, the backlog becomes stale,
and lots of old stories linger.

Why does this happen?

Writing a ticket in a tool freezes it.

Forming stories takes work

This is just one way!

Background / Agile
Mindset

“Working software is the primary
measure of progress”

Notes

There are different ways to draw the mona lisa.

You can always walk away from the bottom and
say “there’s a working painting”. it may not
everything you want, but it’s still the mona lisa.

Notes

Real life tends to be a hybrid of the two, you need
the whole thing in place, but you do more work on
the more important bits first.

Customers want cake,
not flour or eggs.

Notes

This is the other analogy I use.

Cupcake Cupcake +
Frosting

Cupcake +
Frosting +
Sprinkles

Notes

Customers can eat cake. Cupcakes, frosted
cupcakes, and then the ones with the little
sprinkles.  

Get to the point where you can ship cake, then go
back and add more.

That’s great, now what?

Real Life Backlog

Notes

Ok, so we get the cake analogy, but our backlog
still looks like this. How we put this into practice?

Discovery / Delivery

Objectives

Discovery
Figuring out what to do

Delivery
Doing it

Create a Pipeline of Work

(That Solves Problems for Customers)

Agility is the speed through the line.

Discovery Delivery

One Pager Exploration Details Eng Intake Execution Monitor

Another, similar model.

Problem
Definition

Solution
Definition

Eng

Intake

Execution Monitor

One Pager

One Pager:

Plain english, marketing consumable description of
what you’re trying to do and why.

Plenty of online templates, (search for PRD) typically
describe the problem, current state, proposed solution,
success metrics etc.

Personally, I prefe

 A single, plain english, marketing consumable
paragraph

 Mock press release (search for Amazon PR/FAQ)
Notes

When I’m working really closely with Design and
Engineering, I honestly find any more than a
paragraph of plain english text (that marketing/
sales can understand) to be too much detail and
too constraining on the solution space.

The rest shakes out through discussion and
process. We’ll see what I mean soon.

Exploration

Notes

This is called the “design squiggle”. It’s a good
analogy for the messy back and forth at the
beginning and then clarity emerges.

Worked example:

The average home improvement
project is 3 Home Depot trip. Let’s
make an app to plan you
shopping trip. Notes

This is the example, because this is about story
writing. This isn’t about problem discovery or user
research to know that this is a problem worth
solving. That would be a topic for another lecture.

Some tools
 High level journey / story ma

 Sharpie Level Sketchin
 Design mocks

HMW Pick a
project

HMW Know it’s
time to shop?

HMW Figure
out what we

need?

HMW we track
what we’ve
bought?

Browsable
project library

Project
suggestions

Skills
progressions

GPS near
store

Request from
partner

Inventory

Project
“recipes”

Checklist

Aisle by Aisle

Notes

All software is about helping customers get from
point A to point B, and solving something for them.

The journey map is a tool to model that. The top is
the “spine”, asking “how might we...” solve major
steps in the sequence of solving a problem. The
“ribs” that hang below are features to answer the
“HMW?” question.

Notes

If you can’t get all the way across the spine, you
can’t complete the journey and get the customer
from A to B. You don’t have the Mona Lisa and you
don’t have cake.

Create Designs,

Test, and Iterate

I write stories as annotations in design mocks

Notes

I’ll write/review story annotations with design and
engineering together in the room.

Run hallway usability tests first

Bring the engineers

Test with customers

Notes

Great, easy to read book about user testing.
There’s real evidence in live reactions.

Details

Now it’s story writing time

But it’s actually more like
feature writing time.

When [situation],

[Feature] so

[Outcome]
Works for back end systems, too!

I prefer this to As an [X] I want [Y] so [Z]

Working with Eng

Engineering has been in the room
from user story mapping, initial
mocks, and usability testing.

For each story, talk about the
technical approach, especially
good/better/best

Notes

Asking specifically for good/better/best
approaches invites creativity, and more
importantly, helps make it clear what the various
OPTIONS are, which is what makes negotiation,
tradeoffs, and good decisions possible.

Notes

Asking specifically for good/better/best
approaches invites creativity, and more
importantly, helps make it clear what the various
OPTIONS are, which is what makes negotiation,
tradeoffs, and good decisions possible.

Now you can make tickets

Stories can now be estimated
and loaded into sprints.

Home improvement
project list example:

How might we...

 Help the customer get started
with a home improvement
project?

User Story: 
When a user goes shopping for a
project, we want to create list of
tools and materials, so we can be
confident when going to the store.

Notes

This is a simple, one sentence description of what
we’re trying to do. But as you’ll see on the next
slide, there is a LOT of detail and room for
negotiation in this.

Item
 are they alphabetical order? resortable?

editable? deletable
 what about pictures or brand names?

Search?

Store Sections?

Barcodes?

Ads?

Notes

Creating the mock makes all sorts tangible for
discussion with engineering.

Some features may be really cheap to implement,
some may require all sorts of development to
make happen. You don’t know what you don’t
know, but discussing the mocks makes it tangible.

Notes

Remember, my goal is to take the high level user
story, and then from that, extract FEATURE
TICKETS. Those are the pieces of “cake” that I’m
going to be asking engineering to build.

Things to Keep in
Mind

Epics - A collection of features
that together creates a unit of
business value.

Feature - A working unit of
software.

Task/Subtask - Sweeping the
floor, mixing flour and eggs

Notes

Again, there are no “user stories” here. The user
stories were for working with design and giving
them space to solve a problem, but it’s the
features that we’re actually going to build.

It’s ok to ship fewer cupcakes in
the epic. Make another epic!

It’s ok to put frosting and sprinkles
on later!

(In the same epic, if there is time, or in another one)

Common mistakes
with Story Writing

Writing engineering focused
tickets (flour / eggs) vs features

Writing tickets to soon

Siloing eng/prod/design while
developing stories

Review

One Pager Exploration Details Eng Intake Execution Monitor

Marketing
consumable
description.

Story map,

Mocks,

Testing,

Iteration

Feature writing
with good/
better/best

Estimation

Sprint Planning

Build it! Learn!

Making it happen

One Pager Exploration Details Eng Intake Execution Monitor

Marketing
consumable
description.

Story map,

Mocks,

Testing,

Iteration

Feature writing
with good/
better/best

Estimation

Sprint Planning

Build it! Learn!

Discovery / Story workshop:

1.5 hr meeting, 2x per week

5 people max, ideally 2-3

PM, Design, Eng

Estimation

45min, 1x per 2wk
sprint

Sprint Planning

30min, 1x per 2 wk sprint

When should you skip
this?

If it’s faster. For small things,
sometimes just jump to a ticket.

For interactions, sometimes it’s
easier to just code it.

Questions?

questions@awkwardengineer.com

Notes

Box cake mix is.... almost cake. You still gotta do
some work to be able to eat it. I use the box cake
mix analogy for initial threads that connect a
system end to end.

Maybe there’s a lot of work that’s still done
manually, or you’re faking it with a spreasheet, or
you’re using Postman. Cake is the goal.

Notes

Wedding cake is still cake, it’s just expensive.

