Euclid Avenue AMENDMENT

A Modern Paper-Pieced Quilt Pattern by Sassafras Lane Designs

Introduction

This is not a full pattern! This is an amendment to our Euclid Avenue pattern for those who already posess it. If you do not already have the pattern, please grab one at www.sassafras-lane.com! We updated this pattern to include a new version featuring multiple colored fabrics with a background instead of the original 8 fabrics reflecting one another. Below is the yardage, cutting and color photo* of the new coloring!

Yardage \& Materials

Material Requirements	Venti $72^{\prime \prime} \times 96^{\prime \prime}$	*Grande $64^{\prime \prime} \times 72^{\prime \prime}$	Tall $40^{\prime \prime} \times 48^{\prime \prime}$
Assorted Colors	$(36) 1 / 4 / 4$ yards	$(24) 1 / 4 / 4$ yards	$(10) \frac{11 / 4}{}$ yards

Legal Size Foundation Paper ($81 / 2^{\prime \prime} \times 14^{\prime \prime}$)

Block Construction

Make 20 blocks for the Tall quilt size, 48 blocks for the Grande quilt size and 72 blocks for the Venti quilt size.

* Note: This is 8 " wider than the original Grande size.

Cutting Instructions

Tall ($40^{\prime \prime} \times 48^{\prime \prime}$), Grande ($64^{\prime \prime} \times 72^{\prime \prime}$) and Venti ($72^{\prime \prime} \times 96^{\prime \prime}$)
From EACH of the Colors, cut:
(1) $6^{\prime \prime} \times 9^{1 ⁄ 21} 2^{\prime \prime}$ rectangle for section E, cut diagonally (diagram 1)
(1) $7^{\prime \prime} \times 11^{\prime \prime}$ rectangle for section B, cut diagonally (diagram 1)
(2) $5 \frac{1}{2} 2^{\prime \prime}$ tall equilateral triangles for section G (diagram 3)
(1) $4^{\prime \prime} \times 6^{\prime \prime}$ rectangle for section D, cut diagonally (diagram 1)

From the Background, cut:
$(2,4,6) 91 / 2^{\prime \prime} \times$ WOF
subcut into $(10,24,36) 6^{\prime \prime} \times 91 / 22^{\prime \prime}$ rectangles for section A, cut diagonally (diagram 2)
$(2,4,6) 11^{\prime \prime} \times$ WOF
$(2,4,6) 51 / 2^{\prime \prime} \times$ WOF
$(1,3,4) 6 " \times$ WOF
Sassafras Lane Designs • www.sassafras-lane.com

