Thermal transmittance (U-values) for built-up walls

This Technical Note is one of six on the thermal performance of building envelopes. The series comprises:

106: Fundamentals of heat transfer

107: Thermal transmittance (U-values) for built-up walls

108: Thermal bridges, Psi and Chi values

109: Thermal bridges within SAP and NCM

110: Designing building façades to manage the risk of surface condensation and mould growth

111: Designing building façades to manage the risk of interstitial condensation

Introduction

- 1 This Technical Note provides guidance and advice on calculating U-Values for built-up walls to demonstrate compliance with the requirements included within Part L of the Approved Documents.
- 2 This note does not include methods for determining the performance of a curtain wall or window. Please refer to TN48 'U-Values of windows' and TN49 'U-value of curtain walls' for information on those systems.
- 3 It is expected that the reader will be familiar with TN106, BRE report BR 443 and heat transfer more generally.

Relevant standards

4 Relevant standards can be found in TN106.

Notation

Symbol	Quantity	Unit
Α	Area	m ²
C_p	Specific heat capacity	J/kg·K
Н	Heat transfer coefficient	W/K
Q	Heat flow	W
d	Thickness or depth	m
T	Temperature (absolute scale)	K
θ	Temperature (Celsius)	°C
ε	Emissivity	-
q	Rate of air leakage	m³/s m²
ρ	Density	kg/m³
p	Pressure	Pa
L	Thermal conductance, overall	W/K
R	Thermal resistance, overall (1/L)	K/W

1/50 © 2023