

Technical Datasheet

Graphene Field-Effect Transistor Chip: S11

General Description

The GFET chip from Graphenea delivers state-of-the-art graphene devices directly to the customer to allow application-driven research without the added burden of having to fabricate high-quality devices from the start.

The GFET-S11 chip from Graphenea provides 31 graphene devices with a van der Pauw (vdP) geometry, distributed in 3 different sizes. 3 vdPs have a 2x2mm² footprint, 14 vdPs have a 500x500µm² footprint and 14 vdPs have a 125x125µm² footprint. These devices have an optimized geometry for 4-probe measurements in a vdP configuration. These varying graphene device dimensions allow investigation of geometry dependence on device properties, enabling immediate optimization.

Features	Applications		
State-of-the-art vdPs utilizing Graphenea's established high-quality graphene Devices not encapsulated ready for your functionalization Perfect platform device for new sensor research and development	 Graphene device research Quantum transport Gas sensors Chemical sensors 		

- Magnetic sensors
- 31 individual vdPs per chip Mobilities typically in excess of 1000 cm²/V·s

Typical Specifications

Chip dimensions	10 mm x 10 mm
Chip thickness	525 μm
Number of GFETs per chip	31
Gate Oxide thickness	90 nm
Gate Oxide material	SiO ₂
Resistivity of substrate	1-10 Ω·cm
Metallization	Au contacts
Average graphene field-effect mobility	> 1000 cm ² /V·s
Dirac point	< 50 V
Yield	> 75 %

Absolute Maximum Ratings

Maximum gate-ground voltage	± 50 V
Maximum temperature rating	150 °C
Maximum current density	10 ⁷ A·cm ⁻²

www.graphenea.com

GFET-S11 Layout

Channel geometries

Description	W (μm)	L (µm)	Quantity
2000	2000	2000	3
500	500	500	14
125	125	125	14

Cross section

Typical characteristics

Output curves of pairs of vdP contacts. Measured at bias voltage of 20mV (right), measured at room temperature and vacuum conditions on a device with W=L=500 $\mu m.$

www.graphenea.com