CERTIFICATE OF ANALYSIS

* FOR QUALITY ASSURANCE PURPOSES. NOT A MICHIGAN COMPLIANCE CERTIFICATE. PRODUCED: JUL 09, 2021

SAMPLE: PET FORMULA (TINCTURE) // CLIENT: NUVITA CBD // BATCH: PASS $600 \mathrm{MG} / 60 \mathrm{ML}$, BATCH \# 17521

BATCH RESULT: PASS

POTENCY	PASS
METALS	PASS
MICROBIAL	TESTED
PESTICIDES	PASS
SOLVENTS	PASS
TERPENES	TESTED

MATRIX: TINCTURE
CATEGORY: EDIBLE
SAMPLEID: CAM-210706-064
COLLECTED ON: JUL 06, 2021
RECEIVED ON: JUL 06, 2021
BATCH/SAMPLE SIZE: $60 \mathrm{ML} / 60 \mathrm{ML}$
SERVING/PACKAGE SIZE: . 94 G / 56.4 G

CANNABINOID OVERVIEW

CBD:	$10.34 \mathrm{mg} / \mathrm{srv}$
CBC:	$0.54 \mathrm{mg} / \mathrm{srv}$
TOTAL CANNABINOIDS:	$11.34 \mathrm{mg} / \mathrm{srv}$

TOTAL CANNABINOIDS:

POT-01: CANNABINOID POTENCY ANALYSIS BY HPLC-DAD // JUL 08, 2021

ANALYTE	AMT (\%)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL	ANALYTE	AMT (\%)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL
C B C	0.0572 \%	$0.0517 / 0.172$	N/A	THCA	ND	$0.0883 / 0.294$	N/A
CBD	1.10 \%	$0.109 / 0.363$	N/A	THCV	ND	$0.0699 / 0.233$	N/A
CBDA	ND	$0.142 / 0.474$	N/A	TOTAL THC*	0.0421 \%		N/A
CBDV	ND	$0.0673 / 0.224$	N/A	TOTALCBD*	1.10 \%		N/A
CBG	0.00750 \%	$0.0576 / 0.192$	N/A	CBD/SRV	10.3 mg		N/A
CBGA	ND	$0.0328 / 0.109$	N/A	$\triangle{ }^{9}$-THC/SRV	0.400 mg		PASS
CBN	ND	$0.0848 / 0.283$	N/A	CBD/PKG	620 mg		N/A
Δ^{8}-THC	ND	$0.0578 / 0.193$	N/A	Δ^{9}-THC/PKG	23.7 mg		PASS
Δ^{9}-THC	0.0421 \%	$0.102 / 0.34$	N/A				
* BEYOND SCOPE OF ACCREDITATION							
** TOTA	A $\times 0.877)$						
** TOTA	A $\times 0.877)$						

TRP-013: TERPENE ANALYSIS BY GC-MS/HS // JUL 08, 2021

ANALYTE	AMT (\%)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL	ANALYTE	AMT (\%)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL
TOTAL TERPENES *	0.081 \%		N/A	ISOBORNEOL	ND	0.5/1	N/A
TRANS-CARYOPHYLLENE	0.050 \%	0.5/1	N/A	(+)-FENCHONE	ND	0.5/1	N/A
$\alpha-B I S A B O L O L$	0.013%	0.5/1	N/A	Δ^{3}-CARENE	ND	$0.5 / 1$	N/A
a-HUMULENE	0.006%	0.5/1	N/A	Y-TERPINENE	ND	0.5/1	N/A
β-MYRCENE	0.005 \%	0.5/1	N/A	EUCALYPTOL	ND	0.5/1	N/A
GUAIOL	0.002 \%	0.5/1	N/A	(1R)-ENDO-(+)-FENCHYL ALCOHOL	ND	$0.5 / 1$	N/A
SABINENE HYDRATE	0.002 \%	0.5/1	N/A	CIS-NEROLIDOL	ND	0.5/1	N/A
TRANS-NEROLIDOL	0.001 \%	0.5/1	N/A	CEDROL	ND	0.5/1	N/A
LIMONENE	0.001 \%	0.5/1	N/A	CARYOPHYLLENE OXIDE	ND	$0.5 / 1$	N/A
CIS- β-OCIMENE	0.001 \%	0.5/1	N/A	CAMPHOR	ND	0.5/1	N/A
TRANS- β-OCIMENE	ND	0.5/1	N/A	CAMPHENE	ND	0.5/1	N/A
TERPINOLENE	ND	0.5/1	N/A	β-PINENE	ND	$0.5 / 1$	N/A
GERANYL ACETATE	ND	0.5/1	N/A	$\alpha-T E R P I N E N E$	ND	0.5/1	N/A
SABINENE	ND	0.5/1	N/A	$\alpha-P I N E N E$	ND	0.5/1	N/A
PULEGONE	ND	0.5/1	N/A	a-PHELLANDRENE	ND	0.5/1	N/A
LINALOOL *	ND	0.5/1	N / A	a-CEDRENE	ND	0.5/1	N/A
ISOPULEGOL	ND	0.5/1	N/A	VALENCENE	ND	0.5/1	N/A

RESULTS CERTIFIED BY: XIN YAN LABORATORY DIRECTOR, CAMBIUM ANALYTICA JUL 09, 2021

Lin yan

RESULTS CERTIFIED BY: DOUGLAS SMITH CHIEF SCIENTIST, CAMBIUM ANALYTICA JUL 09, 2021

PLC-02: CHEMICAL RESIDUE ANALYSIS BY LC-MS/MS // JUL 08, 2021

AnAlyte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	Analyte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
ABAMECTIN	$0.5 \mu \mathrm{~g} / \mathrm{g}$	ND	69.9/233	PASS	IMAZALIL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$15.7 / 52.3$	PASS
ACEPHATE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	16.5/54.9	PASS	IMIDACLOPRID	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	34.3/114	PASS
ACEQUINOCYL	$2 \mu \mathrm{~g} / \mathrm{g}$	ND	28.5/95	PASS	KRESOXIM-				
ACETAMIPRID	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	14.6/48.8	PASS	METHYL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$12 / 40$	PASS
ALDICARB	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$42.9 / 143$	PASS	MALATHION	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$15.8 / 52.7$	PASS
AZOXYSTROBIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$10.6 / 35.3$	PASS	METALAXYL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$17.8 / 59.2$	PASS
BIFENAZATE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$25.4 / 84.5$	PASS	METHIOCARB	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	14/46.7	PASS
BIFENTHRIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	14.7/49.1	PASS	METHOMYL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$9.54 / 31.8$	PASS
BOSCALID	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	12.9/42.2	PASS	M GK-264	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$19.4 / 64.8$	PASS
CARBARYL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$12.2 / 40.7$	PASS	MYCLOBUTANIL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$20 / 66.5$	PASS
CARBOFURAN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$10.8 / 36$	PASS	NALED	$0.5 \mu \mathrm{~g} / \mathrm{g}$	ND	$23.3 / 77.6$	PASS
CHLORANTRANIL-	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	24.9/82.9	PASS	OXAMYL	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$35.7 / 119$	PASS
IPROLE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$24.9 / 82.9$	PASS	PACLOBUTRAZOL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$36.7 / 122$	PASS
CHLORFENAPYR	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	12.2/40.8	PASS	PERMETHRIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	38.2/128	PASS
CHLORPYRIFOS	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	25/83.3	PASS	PHOSMET	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$24.2 / 80.7$	PASS
CLOFENTEZINE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	20.4/68	PASS	PRALLETHRIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$37.6 / 125$	PASS
CYFLUTHRIN	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	39.2/131	PASS	PROPICONAZOLE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	41/137	PASS
CYPERMETHRIN	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	28/93.5	PASS	PROPOXUR	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$11.8 / 39.2$	PASS
DAMINOZIDE	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$24.2 / 80.6$	PASS	PYRETHRINS	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$20.3 / 67.6$	PASS
DIAZINON	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	18.8/62.8	PASS	PYRIDABEN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$26.4 / 88.1$	PASS
DICHLORVOS	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$12.7 / 42.4$	PASS	SPINOSAD	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$5.96 / 19.9$	PASS
DIMETHOATE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	12.4/41.3	PASS	SPINOSAD A		ND	$6.46 / 21.5$	N/A
ETHOPROPHOS	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	19.3/64.4	PASS	SPINOSAD D		ND	$2.44 / 8.1$	N/A
ETOFENPROX	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$14.5 / 48.5$	PASS	SPIROMESIFEN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$14.8 / 49.3$	PASS
ETOXAZOLE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$13.7 / 45.6$	PASS	SPIROTETRAMAT	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	35.9/120	PASS
FENOXYCARB	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$20.2 / 67.4$	PASS	SPIROXAMINE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	12.4/41.4	PASS
FENPYROXIMATE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	44.5/148	PASS	TEBUCONAZOLE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	38.1/127	PASS
FIPRONIL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$45.7 / 152$	PASS	THIACLOPRID	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	15.7/52.2	PASS
FLONICAMID	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$22.5 / 74.9$	PASS	THIAMETHOXAM	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	13.9/46.2	PASS
FLUDIOXONIL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$11.1 / 37.1$	PASS	TRIFLOXYSTROB -	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	19/63.2	PASS
HEXYTHIAZOX	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	28.6/95.2	PASS	IN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	19163.2	PASS

PGC-03: CHEMICAL RESIDUE ANALYSIS BY GC-MS/MS // JUL 08, 2021

ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
CHLORFENAPYR	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$6.09 / 20.4$	PASS	METHYL PARATHION	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$3.11 / 10.4$	PASS

ANALYTE	LIMIT	AMT ($\mathrm{CFO} / \mathrm{g}$)	PASS/FAIL	ANALYte	LIMIT	AMT ($\mathrm{CFU} / \mathrm{g}$)	PASS/FAIL
COLIFORMS	$100 \mathrm{CFU} / \mathrm{g}$	ND	N/A		Any amount in 1		/
ASPERGILLUS NIGER	Any amount in 1 gram	ND	N/A	ASPERGILLUS TERREUS	gram		N/A
ASPERGILLUS FLAVUS	Any amount in 1 gram	ND	N/A	SALMONELLA ENTERICA	Any amount in 1	ND	N/A
SALMONELLA BONGORI	Any amount in 1 gram	ND	N/A	SALMONELLA ENTERICA	gram	ND	N/A
				ASPERGILLUS FUMIGATUS	Any amount in 1 gram	ND	N/A
				SHIGA TOXIN-PRODUCING E.	Any amount in 1	ND	N/A

: TYM BY 3M PETRIFILM RYM // JUL 09, 2021

ANALYTE	LIMIT	AMT (CFU/g)	PASS/FAIL
YEAST \& MOLD	$10000 \mathrm{CFU} / \mathrm{g}$	ND	N / A

MET-05: HEAVY METALS ANALYSIS BY ICP-MS // JUL 08, 2021

ANALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
ARSENIC	$1.5 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.0448 / 0.5$	PASS	LEAD	$0.5 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.0169 / 0.5$	PASS
CADMIUM	$0.5 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.0256 / 0.5$	PASS	MERCURY	$3 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.00439 / 0.05$	PASS
CHROMIUM	$2 \mu \mathrm{~g} / \mathrm{g}$	$0.010 \mu \mathrm{~g} / \mathrm{g}$	$0.0274 / 0.5$	PASS	NICKEL		$0.009 \mu \mathrm{~g} / \mathrm{g}$	$0.0271 / 0.5$	N/A
COPPER		ND	0.0446/0.5	N/A					

SOL-04: RESIDUAL SOLVENT ANALYSIS BY GC-MS // JUL 08, 2021

AnALyte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL	AnAlyte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL
1,2-	$5 \mu \mathrm{~g} / \mathrm{g}$	ND	0.4/1.34	PASS	HEPTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.31 / 4.37$	PASS
DICHLOROETHANE	$5 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.4 / 1.34$	PASS	HEXANE	$290 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.42 / 4.74$	PASS
2,2-	290 /g/g	ND	$0.98 / 3.27$	PASS	HeXANES ALL ISOMERS *	$290 \mu \mathrm{~g} / \mathrm{g}$	ND		PASS
DIMETHYLBUTANE	$290 \mu \mathrm{~g} / \mathrm{g}$		0.9813 .27	PASS	ISOBUTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	1.6/5.34	PASS
2,3-	290 Hg/g	ND	$2.19 / 7.32$	PASS	ISOPROPYL ALCOHOL	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	4.9/16.3	PASS
DIMETHYLBUTANE	$290 \mu \mathrm{~g} / \mathrm{g}$	ND	2.1917 .32	PASS	METHANOL	$3000 \mu \mathrm{~g} / \mathrm{g}$	ND	$7.89 / 26.4$	PASS
2 -	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	1.54/5.14	PASS	METHYLENE CHLORIDE	$600 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.36 / 4.53$	PASS
METHYLBUTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	1.54/5.14	PASS	NEOPENTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.49 / 4.97$	PASS
3 -		ND	$0.73 / 2.44$	PASS	PENTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.46 / 4.87$	PASS
METHYLPENTANE	290 Hg/g	ND	$0.73 / 2.44$	PASS	PENTANES ALL ISOMERS *	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND		PASS
ACETONE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.57 / 5.23$	PASS	PROPANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.95 / 6.51$	PASS
ACETONITRILE	$410 \mu \mathrm{~g} / \mathrm{g}$	ND	1.85/6.17	PASS	TOLUENE	$890 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.88 / 6.26$	PASS
BENZENE	$2 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.18 / 0.59$	PASS	TRICHLOROETHY-	$80 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.29 / 0.96$	PASS
BUTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.68 / 5.59$	PASS	LENE	$80 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.29 / 0.96$	PASS
BUTANES ALL ISOMERS *	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND		PASS	TOTAL XYLENES	$2170 \mu \mathrm{~g} / \mathrm{g}$	ND	$2.02 / 6.72$	PASS
CHLOROFORM	$60 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.78 / 2.59$	PASS					
ETHANOL	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$6.02 / 20.1$	PASS					
ETHYL ACETATE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	1.95/6.49	PASS					
ETHYLENE OXIDE	$50 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.15 / 0.49$	PASS					
ETHYL ETHER	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$1.37 / 4.55$	PASS					

ILAC-MRA, PJLA ACCREDITED

PLC-02: CHEMICAL RESIDUE ANALYSIS BY LC-MS/MS
ABAMECTIN, ABAMECTIN BA, ABAMECTIN BB, ACEPHATE, ACEQUINOCYL, ACETAMIPRID, ALDICARB, AZOXYSTROBIN, BIFENAZATE, BIFENTHRIN, BOSCALID, CARBARYL, CARBOFURAN, CHLORANTRANILIPROLE, CHLORFENAPYR, CHLORPYRIFOS, CLOFENTEZINE, CYFLUTHRIN, CYPERMETHRIN, DAMINOZIDE, DIAZINON, DICHLORVOS, DIMETHOATE, ETHOPROPHOS, ETOFENPROX, ETOXAZOLE, FENOXYCARB, FENPYROXIMATE, FIPRONIL, FLONICAMID, FLUDIOXONIL, HEXYTHIAZOX, IMAZALIL, IMIDACLOPRID, KRESOXIM-METHYL, MGK-264, MALATHION, MALATHION A, METALAXYL, METHIOCARB, METHOMYL, METHYL PARATHION, MYCLOBUTANIL, NALED, OXAMYL, PACLOBUTRAZOL, PERMETHRIN, PERMETHRIN CIS, PERMETHRIN TRANS, PHOSMET, PRALLETHRIN, PROPICONAZOLE, PROPOXUR, PYRETHRINS, PYRETHRINS CINERIN I, PYRETHRINS CINERIN I3, PYRETHRINS JASMOLIN I, PYRETHRINS JASMOLIN I-3, PYRETHRINS PYRETHRIN I, PYRIDABEN, SPINOSAD, SPINOSAD A, SPINOSAD D, SPIROMESIFEN, SPIROTETRAMAT, SPIROXAMINE, TEBUCONAZOLE, THIACLOPRID, THIAMETHOXAM, TRIFLOXYSTROBIN

POT-01: CANNABINOID POTENCY ANALYSIS BY HPLC-DAD CBD, CBDA, DELTA-9-THC, THCA, CBDV, THCV, CBG, CBGA, CBN, DELTA-8-THC, CBC

TRP-013: TERPENE ANALYSIS BY GC-MS/HS
(+)-FENCHONE, (1R)-ENDO-(+)-FENCHYLALCOHOL, CAMPHENE, CAMPHOR, CARYOPHYLLENE OXIDE, CEDROL, DELTA-3-CARENE, EUCALYPTOL, FENCHOL, GERANIOL, GERANYL ACETATE, GUAIOL, ISOBORNEOL, ISOPULEGOL, LIMONENE, NEROLIDOL, OCIMENE, PHELLANDRENE, PULEGONE, SABINENE, SABINENE HYDRATE, TERPINEOL 3, TERPINOLENE, VALENCENE, ALPHA-BISABOLOL, ALPHACEDRENE, ALPHA-HUMULENE, ALPHA-PHELLANDRENE, ALPHAPINENE, ALPHA-TERPINENE, BETA-MYRCENE, BETA-PINENE, CIS-NEROLIDOL, CIS-BETA-OCIMENE, GAMMA-TERPINENE, TRANS-CARYOPHYLLENE, TRANS-NEROLIDOL, TRANS-BETAOCIMENE

SOL-04: RESIDUAL SOLVENT ANALYSIS BY GC-MS
1,2-DICHLOROETHANE, 2,2-DIMETHYLBUTANE, 2,3dimethylbutane, 2-methylbutane, 2-methylpentane, 3methylpentane, Acetone, acetonitrile, benzene, BUTANE, CHLOROFORM, ETHANOL, ETHYL ACETATE, ETHYL ETHER, ETHYLENE OXIDE, HEPTANE, HEXANE, ISOBUTANE, ISOPROPYL ALCOHOL, METHANOL, METHYLENE CHLORIDE, neopentane, pentane, propane, toluene, total XYLENES, TRICHLOROETHYLENE, M-XYLENE, O-XYLENE, P- AND M-XYLENE, P-XYLENE

MET-05: HEAVY METALS ANALYSIS BY ICP-MS
ARSENIC, CADMIUM, CHROMIUM, COPPER, LEAD, MERCURY, NICKEL

PGC-03: CHEMICAL RESIDUE ANALYSIS BY GC-MS/MS CHLORFENAPYR, METHYL PARATHION

* for quality assurance purposes. not a michigan compliance certificate.

