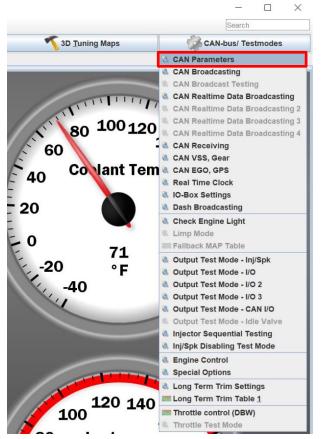
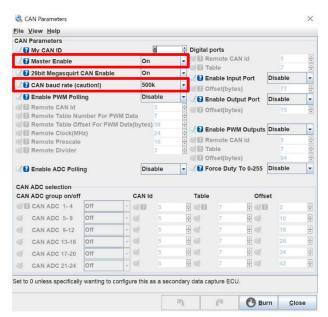


Interfacing Spartan 3 to MegaSquirt 3

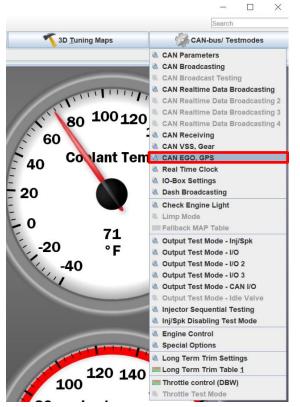
Your Megasquirt 3 ECU must be running Firmware 1.5.1 or newer, earlier firmwares have fewer user adjustable CAN settings. If you find that you are missing CAN options in Tuner Studio; you are most likely running a firmware older than 1.5.1

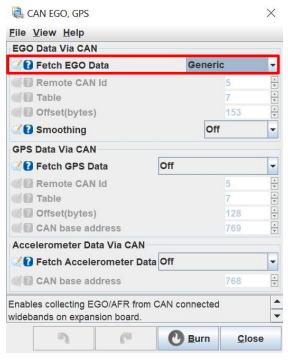

Spartan 3 CAN settings

Spartan 3's default CAN Baud rate is 500kbit/s and the default CAN Format is 0 and the default CAN ID is 1024. The default settings do not need to be changed for a single Spartan 3 install. When installing multiple units, each unit needs to be assigned a unique CAN ID via USB-serial.

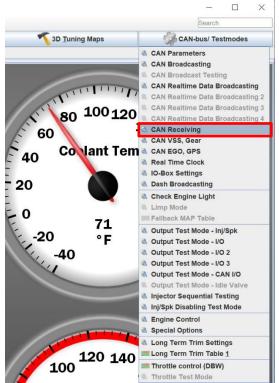

Please refer to Section 12 of the Spartan 3 User manual regarding the CAN Termination Resistor.

MegaSquirt 3 Tuner Studio settings


Click CAN-bus/Testmodes and select CAN Parameters.


Set Master Enable to On. Set CAN baud rate to 500k.

Interfacing Spartan 3 to MegaSquirt 3 May 23 2021



Click CAN-bus/Testmodes and select CAN EGO, GPS

Set Fetch EGO Data to Generic

Click CAN-bus/Testmodes and select CAN Receiving

	ceiving																				
Enable receiving CAN data Local variable / channel Std/Ext					Identifier (dec.)				On Offset Size						Multiply						
ocal	CAN EGO01		Std/E		-		1024	ec.)		o o		Size		-		10	÷ 2	Divide 1	Ac	0	_
	Off	-	3	Std	+		0	×		0	* *		10			1	• • •	1	<u>■</u> ⊴	0	_
	Off	-	3	Std	-	3	0		1	0	• •	3	10	-	a	1	• • • •	1		0	_
	Off			Std	-	3	0		3	0	• •	3	10	•	3	1	• • • • 2	1.		0	_
	Off	-		Std	-		0	•	3	0	• •		10		3	1	• •	1	• •	0	_
	Off	-		Std			0	•	3	0	•		10	-	3	1	• • • •	1	• •	0	_
	Off			Std	-		0		3	0	• •		10		3	1	• • • •	1	• •	0	_
		-			-	-	0		3	0	• •		1000	-	3	1	• •	1	• •	0	_
	Off	-		Std	•	Ides					•	Cine	10	-		1.		1		1.0	
ocai	variable / chan	nei	Sta/E	Std	-	Ider	otifier (de			set 0		Size	, 1U	-	Mul	tiply 1		Divide	Ac	0	
	Off	-	a	Std	-	3	0	•	3	0	• •	2	10		3	1	• •	1		0	_
	Off	-	1	Std	-	3	0	• •		0	۲ ۲		10	-	3	1	• •	1	• • •	0	_
	Off	-		Std	-		0	•	3	0	× •		10		3	1	• • •	1.	• •	0	_
		-					0	•	2 3	0			10	_	3	1	• • •	1	• • •	0	_
	Off	-		Std	-		0			0	•			-	3	1	1000			0	_
	Off	-		Std	-		-	•		_			10	•		-	Land	1		-	_
	Off	-		Std	•		0	•		0	×		1U	-		1	• 4	1	•	0	_
	Off	-		Std	-		0	•	2	0	* *		1U	-		1	•	1	÷ 🔇	0	

Set Enable receiving CAN data to On

Click on Fuel Settings and select AFR/EGO Control

AFR / EGO Control

X File View Help AFR / EGO Control -Narrow Band -AFR / EGO Sensor Mapping **Algorithm** Simple BGO Sensor Type Injector - Uses Sensor Use EGO Delay Table Use IGN events -MS3X Inj A 🔮 EGO1 • Ignition Events Per Step 16 + Number Of Sensors 1 EGO Sensor Response Time(ms) 50 MS3X Inj B 🚅 EGO1 • 4 Controller Step Size(%) 1 Off Remember to Calibrate and set Project Properties 🔮 🛿 Use Authority Table -EGO1 MS3X Inj C 🧭 • Controller Auth +/-(%) 15 ÷ EGO1 MS3X Inj D 🦪 • Only Correct Above: (AFR) 9.0 4 EGO ports And Correct Below:(AFR) 20.0 4 MS3X Inj E 🧭 EGO1 • EGO 1 Port CAN EGO • Active Above Coolant(°F) 160.0 4 EGO 2 Port EGO EGO1 MS3X Inj F 🥑 4 • Active Above RPM 1300 EGO 3 Port EGO 4 Active Below TPS(%) 70.0 MS3X Inj G 🧭 EGO1 • 4 Active Below Load(%) 90.00 EGO 4 Port EGO MS3X Inj H 🧭 EGO1 20.00 4 4 4 4 4 4 4 • Active Above Load(%) EGO 0 EGO 5 Port EGO Delay After Start(s) 30 EGO EGO 6 Port V3 Inj 1 C EGO1 • PID Proportional Gain(%) EGO 7 Port EGO **PID** Integral(%) V3 Inj 2 EGO1 • PID Derivative(%) 0 EGO 8 Port EGO . None - no fuel changes are made in response to oxygen sensor readings. -Simple - This method of closed-loop EGO control is well-suited to use with a narrowband O2 sensor. (1) C Burn Close

Set EGO 1 Port to CAN EGO