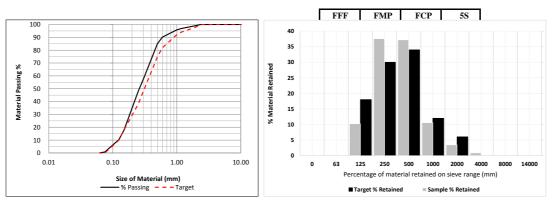
## BLENDING PROGRAMME - 0/2 LIME MORTAR SAND FOR SMOOTH FINE NORMAL FINISHING COATS - IMPROVEMENT TO NHLB BY ON SITE BLENDING OF F1FF

## COMMENT:-

THE PRESENCE OF FINE SANDS (BELOW 125 MICRONS) IN A MIX WILL DEMAND MORE WATER DUE TO THE HIGHER SURFACE AREA OF THE GRAINS TO BE COATED. COMPARE THE SURFACE AREA OF A ONE TONNE BOULDER TO THE SURFACE AREA OF ONE TONNE OF SAND GRAINS TO VISUALISE THE DIFFERENCE. A HIGH WATER CONTENT IN A MORTAR REDUCES THE COMPRESSIVE AND FLEXURAL STRENCTH. HIGH MOSTIZE WILL PROMOTE SHRINKAGE AND COULD LEAD TO DE-BONDING ESPECIALLY IN LIME MORTARS APPLIED TO LOW SUCTION AREAS. HIGH WATER CONTENT IN LIME MORTARS WILL LEAD TO LONGER SETTING TIMES, POSSIBLLY HIME LEACHING AND MORE SENTIVITY TO ADVERSE WEATHER CONDITIONS. WHERE FINER SANDS BUSCH SUCH AND RENDERS, SOF A RENDER DEPENDS ON THE BONDING WITH THE BACKGROUND AND BETWEEN COATS.BONDING IS PARTLY DEPENDENT ON THE CAPILLARY SUCTION OF THE BACKGROUND OR THE PREVIOUS COAT. A PERCENTAGE OF FINER PARTICLES (10-20% BETWEEN 150 AND 75 MICRONS) E 20% PASSING THE 300 SIEVEJ AND 2% BELOW 75 MICRONS) WILL PROMOTE BONDING WITHOUT AFFECTING VAPOUR PERMEABILITY AND CAPILLARY SUCTION. PARTICULAR ATTENTION SHOULD BE GIVEN TO CURING. IN ALL CASES BINDER QUANTITIES SHOULD BE CAREFULLY CONSIDERED IN RELATION TO THE PERFORMANCE REQUIRED AND THE COMPOSITION OF THE SAND. SAND SARE MOSTLY ON STAL CASES BINDER QUANTITIES SHOULD BE CAREFULLY CONSIDERED IN RELATION TO THE PERFORMANCE REQUIRED AND THE COMPOSITION OF THE SAND. SAND SARE MOSTLY OVER OF LINE WORK AND CONSEQUENTLY, FOR THE VAPOUR PERMEABILITY, SO VITAL FOR THE VOID STRUCTURE OF CONLENG AND THE PERFORMANCE REQUIRED AND THE COMPOSITION OF THE SAND. SANDS ARE MOSTLY OVER OF LINE OF COMPOSITION. MONOGRANULAR SANDS, DEFINED AS HAVING A PARTICLE DISTRIBUTION OF MORE THAN THE PERFORMANCE AGAINST ACCUMULATION OF CONDENSATION. MONOGRANULAR SANDS, DEFINED AS HAVING A PARTICLE VILL DIMINISH WORKABILITY OF LIME MORTARS AND THEREFORE INCREASE THE DANGER OF TOO MUCH WATER ADDITION OF MORE THAN THE PERCENT OVER OFLING WORKABILITY OF LIME MORTARS AND THEREFORE INCREASE THE DANGER OF TOO MUCH WATER ADDITION IN ORDER TO ACHIEVE TO ACHIEVE OR MICH GOOD SAND

|        |         |         |         |         |            |            |            |            |        |     |        |    |        |        |        |       | р         | D         |         |          |                              |
|--------|---------|---------|---------|---------|------------|------------|------------|------------|--------|-----|--------|----|--------|--------|--------|-------|-----------|-----------|---------|----------|------------------------------|
|        | %       | %       | %       | %       | %          | %          | %          | %          |        | В   | C      | D  | р      | р      | Р      | D     | В<br>L %  | В<br>L %  |         |          |                              |
|        | 70<br>M | 70<br>M | 70<br>M | 70<br>M | 70<br>M    | 70<br>M    | 70<br>M    | 70<br>M    | A<br>B | В   | D D    | B  | P<br>R | P      | P<br>R | R     | L 70<br>E | L 70<br>E |         | TARGET   | 1                            |
|        | A P     | A P     | A P     | A P     | A R        | A R        | A R        | A R        | D<br>T | L   | D<br>I | T  | C K    | к<br>О | O      | O K   | N R       | L<br>N P  |         | SPEC FOI |                              |
|        | ТА      | ТА      | ТА      | ТА      | ТЕ         | ТЕ         | ТЕ         | ТЕ         | E      | E   | E      | E  | р      | р      | р      | р     | DE        | DA        |         | NHLB     |                              |
| Sieve  | . S     | . S     | . S     | . S     | л Ц<br>. Т | Г Е<br>. Т | л Ц<br>. Т | л Е<br>. Т | N      | N   | N      | N  | 1      | 1      | 1      | 1     | ЕТ        | ES        | Sieve F | INISHIN  | G                            |
| Size   | A S     | BS      | C S     | D S     | A D        | ВD         | CD         | DD         | D      | D   | D      | D  | А      | В      | С      | D     | DE        | DS        | Size    | COATS    | 0                            |
| ome    |         | 20      | 00      | 50      |            | 22         | 0.5        | 55         | Б      | Б   | Б      | Б  |        | Ъ      | 0      | 2     | 22        | 20        | ome     | 000      |                              |
| 14.000 | 100     | 100     | 100     | 100     | 0          | 0          | 0          | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 100.0     | 14.000  | 100      |                              |
| 10.000 | 100     | 100     | 100     | 100     | 0          | 0          | 0          | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 100.0     | 10.000  | 100      | THE BLENDED % PASSING IS THE |
| 8.000  | 100     | 100     | 100     | 100     | 0          | 0          | 0          | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 100.0     | 8.000   | 100      | RELEVANT OUTPUT WHICH IS     |
| 6.300  | 100     | 100     | 100     | 100     | 0          | 0          | 0          | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 100.0     | 6.300   | 100      | PLOTTED ON THE CUMULATIVE    |
| 5.000  | 100     | 100     | 100     | 100     | 0          | 0          | 0          | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 100.0     | 5.000   | 100      | LOGARITHMIC CHART BELOW      |
| 4.000  | 100     | 100     | 99.4    | 100     | 0          | 0          | 0.6        | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 100.0     | 4.000   | 100      | AND MAY BE COMPARED WITH     |
| 2.800  | 100     | 99.9    | 94      | 100     | 0          | 0.1        | 5.4        | 0          | 0      | 100 | 0      | 20 | 0      | 0.08   | 0.00   | 0.00  | 0.08      | 99.9      | 2.800   | 100      | THE TARGET SPECIFICATION.    |
| 2.360  | 100     | 99.9    | 88      | 100     | 0          | 0          | 6          | 0          | 0      | 100 | 0      | 20 | 0      | 0.00   | 0.00   | 0.00  | 0.00      | 99.9      | 2.360   | 100      |                              |
| 2.000  | 100     | 99      | 82.1    | 100     | 0          | 0.9        | 5.9        | 0          | 0      | 100 | 0      | 20 | 0      | 0.75   | 0.00   | 0.00  | 0.75      | 99.2      | 2.000   | 98       |                              |
| 1.180  | 99.9    | 96.2    | 62.9    | 100     | 0.1        | 2.8        | 19.2       | 0          | 0      | 100 | 0      | 20 | 0      | 2.33   | 0.00   | 0.00  | 2.33      | 96.8      | 1.180   | 94       |                              |
| 1.000  | 99.8    | 94.9    | 56.8    | 100     | 0.1        | 1.3        | 6.1        | 0          | 0      | 100 | 0      | 20 | 0      | 1.08   | 0.00   | 0.00  | 1.08      | 95.8      | 1.000   | 92       |                              |
| 0.600  | 98.8    | 88.2    | 43.3    | 100     | 1          | 6.7        | 13.5       | 0          | 0      | 100 | 0      | 20 | 0      | 5.58   | 0.00   | 0.00  | 5.58      | 90.2      | 0.600   | 82       |                              |
| 0.500  | 97.6    | 82.2    | 39.1    | 100     | 1.2        | 6          | 4.2        | 0          | 0      | 100 | 0      | 20 | 0      | 5.00   | 0.00   | 0.00  | 5.00      | 85.2      | 0.500   | 75       |                              |
| 0.300  | 80.9    | 48.9    | 29.8    | 99.8    | 16.7       | 33.3       | 9.3        | 0.2        | 0      | 100 | 0      | 20 | 0      | 27.75  | 0.00   | 0.03  | 27.78     | 57.4      | 0.300   | 48       |                              |
| 0.250  | 67.5    | 37.7    | 26.6    | 99.2    | 13.4       | 11.2       | 3.2        | 0.6        | 0      | 100 | 0      | 20 | 0      | 9.33   | 0.00   | 0.10  | 9.43      | 48.0      | 0.250   | 38       |                              |
| 0.150  | 7.7     | 8.6     | 3.2     | 64.3    | 59.8       | 29.1       | 23.4       | 34.9       | 0      | 100 | 0      | 20 | 0      | 24.25  | 0.00   | 5.82  | 30.07     | 17.9      | 0.150   | 18       |                              |
| 0.125  | 1.7     | 4.1     | 0.8     | 41.8    | 6          | 4.5        | 2.4        | 22.5       | Õ      | 100 | Ő      | 20 | Ő      | 3.75   | 0.00   | 3.75  | 7.50      | 10.4      | 0.125   | 10       |                              |
| 0.075  | 0.1     | 0.2     | 0.2     | 3.2     | 1.6        | 3.9        | 0.6        | 38.6       | 0      | 100 | 0      | 20 | 0      | 3.25   | 0.00   | 6.43  | 9.68      | 0.7       | 0.075   | 0        |                              |
| 0.063  | 0.1     | 0.2     | 0.2     | 0.5     | 0.1        | 0.1        | 0.0        | 2.7        | 0      | 100 | 0      | 20 | 0      | 0.08   | 0.00   | 0.45  | 0.53      | 0.2       | 0.063   | 0        |                              |
| 0.000  | 0       | 0.1     | 0.2     | 0.5     | 0.1        | 0.1        | 0.2        | 0.5        | 0      | 100 | 0      | 20 | 0      | 0.08   | 0.00   | 0.45  | 0.17      | 0.0       | 0.000   | 0        |                              |
| Total  | 0       | 0       | 0       | 0       | 100        | 100        | 100        | 100        | 0      | 100 | 0      | 20 | 0      | 83.33  | 0.00   | 16.67 | 100.0     | 0.0       | 0.000   | 0        |                              |

- Tested


   A
   FMP
   14/05/14
   0 kg

   0/1 LIME MORTAR SMOOTH FINE FINISHING COAT FMP

   B
   FICB1-1000M
   14/05/14
   100 kg

   0/2 LIME MORTAR SMOOTH FINE FINISHING COAT FCB
- **C** 0/4 GREY CYE CSG BLM 20/06/13 0 kg
- D F1/FFF 07/05/14 20 kg 0/0.25 FINE FILLER SAND

SAMPLE PERCENTAGE RETAINED EXCEEDS 10% ON FOUR SIZE RANGES AS DEMONSTRATED ON THE BAR CHART THUS CREATING A WELL GRADED SAND FOR LIME MORTAR.



## BLENDING PROGRAMME

0/2 LIME MORTAR SAND FOR SMOOTH FINE NORMAL FINISHING COATS

IMPROVEMENT TO NHLB BY BLENDING F1FF

Ref: ZBP4.NHLB 02 FFF