(1) Sum of interior angles

〕 Number of triangles in the polygon $\times 180^{\circ}$

Triangle	Quadrilateral	Pentagon	Hexagon
		2 triangles	3 triangles
1 triangle	$2 \times 180^{\circ}=360^{\circ}$	$3 \times 180^{\circ}=540^{\circ}$	$4 \times 180^{\circ}=720^{\circ}$
180°	2		

Sum of the interior angles in n-sided polygon $(n-2) \times 180^{\circ}$
Sum of exterior angles

Sum of the exterior angles in n-sided polygon 360°

Regular n-sided polygon

(a) One(each) interior angle 】 $\theta=\left[(n-2) \times 180^{\circ}\right] \div n$

$$
=180^{\circ}-\frac{360^{\circ}}{n}
$$

(b) One(each) exterior angle $\downarrow \alpha=360^{\circ} \div n$

Simple

1. If the sign is a regular octagon as shown, then what is each angle of the sign?
(A) 150°
(B) 144°
(C) 135°
(D) 120°
(E) 108°

STOP

2. In rhombus $\mathrm{ABCD}, \angle \mathrm{A}=(10 x+6)^{\circ}$ and $\angle \mathrm{B}=(5 x-6)^{\circ}$. What is the measure of $\angle \mathrm{C}$?
(A) 96°
(B) 108°
(D) 126°
(E) 132°
(C) 112°
3. If the measure of each interior angle of a regular polygon is 162°, then how many sides does the polygon have?
(A) Twelve
(B) Sixteen
(C) Eighteen
(D) Twenty
(E) Twenty four

Sum of the interior angles
:(2) Sum of exterior angles

At a angle of a polygon
Interior angle + Exterior angle $=180^{\circ}$

3 Regular n-sided polygons <Each interior/ exterior angle»

Side	Name	Interior	Exterior
3	Triangle	60°	120°
4	Quadrilateral	90°	90°
5	Pentagon	108°	72°
	6	Hexagon	120°
7	Heptagon	$1280^{\circ} \frac{4}{7}^{\circ}$	$51 \frac{33^{\circ}}{}{ }^{\circ}$
	8	Octagon	135°
9	Nonagon	145°	40°
10	Decagon	144°	36°
11	Undecagon	$147 \frac{3}{11}{ }^{\circ}$	$22 \frac{8}{11}{ }^{\circ}$
12	Dodecagon	150°	30°

-Tip from Top.

Essence

1. Since the sum of eight interior angles is $(8-2) \times 180^{\circ}=1080^{\circ}$, each angle of the regular octagon is $\frac{1080^{\circ}}{8}=135^{\circ}$

Ans (C)
2. Since $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}, \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$\therefore(10 x+6)^{\circ}+(5 x-6)^{\circ}=180^{\circ}$
$\therefore 15 x^{\circ}=18 Q_{12}^{\circ} \quad \therefore x=12^{\circ}$
$\therefore \angle \mathrm{C}=\angle \mathrm{A}=10 \times 12^{\circ}+6^{\circ}=126^{\circ}$
Ans (D)
3. Since each interior angle of the regular polygon is 162°, each exterior angle is $180^{\circ}-162^{\circ}=18^{\circ}$
\therefore The number of sides of the polygon is $\frac{360^{\circ}}{18^{\circ}}=20$

Ans, (D)

pattern guide | Ace of Base

1

Sum of interior angles

Sum of the interior angles in n-sided polygon $(n-2) \times 180^{\circ}$

Special quadrilateral
Supplementary angle
Sum of co-interior angles $=180^{\circ}$

3 Interior/Exterior Angles
Interior angle + Exterior angle at a vertex point $=180^{\circ}$

Sum of the exterior angles of any-sided polygon $=360^{\circ}$

Regular polygons

Each interior angle
in n-sided regular polygon
$\theta=\frac{(n-2) \times 180^{\circ}}{n}=180^{\circ}-\frac{360^{\circ}}{n}$

In hexagon $A B C D E F$, what is the average (arithmetic mean) of a, b, c, d, e, and f ?
(A) 60
(B) 90
(C) 120
(D) 150

(Sol) Since the polygon ABCDEF is a hexagon, the sum of the six interior angles is $a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+f^{\circ}$ $=(6-2) \times 180^{\circ}=4 \times 180^{\circ}=720^{\circ}$
\therefore The average (arithmetic mean) of a, b, c, d, e, and f is $720 \div 6=120$

Ans (C)
In parallelogram $\mathrm{ABCD}, \angle \mathrm{C}=120^{\circ}$ and $\angle \mathrm{BDC}=24^{\circ}$.
What is the measure of $\angle \mathrm{DAE}$?
(A) 24°
(B) 36°
(C) 48°
(D) 54°

(Sol) In parallelogram $\mathrm{ABCD}, \overline{\mathrm{AD}} \| \overline{\mathrm{BC}} . \therefore \angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$
$\therefore \angle \mathrm{D}=180^{\circ}-\angle \mathrm{C}=180^{\circ}-120^{\circ}=60^{\circ}(\leftarrow$ Co-interior angle $)$
$\therefore \angle \mathrm{ADE}=\angle \mathrm{D}-\angle \mathrm{BDC}=60^{\circ}-24^{\circ}=36^{\circ}$
In right triangle $\mathrm{ADE}, \angle \mathrm{DAE}=90^{\circ}-36^{\circ}=54^{\circ}$
Ans (D)
In pentagon $A B C D E$, what is the measure of the exterior angle at E ?
(A) 60°
(B) 80°
(C) 120°
(D) 240°

(Sol) If the exterior angle at E is x°, the sum of $\mathrm{C} / 80$
the exterior angles is $60^{\circ}+(180-110)^{\circ}$

$$
+(180-100)^{\circ}+(180-90)^{\circ}+x^{\circ}
$$

$$
=60^{\circ}+70^{\circ}+80^{\circ}+90^{\circ}+x^{\circ}=360^{\circ}
$$

$$
\therefore 300^{\circ}+x^{\circ}=360^{\circ} \therefore x^{\circ}=360^{\circ}-60^{\circ}=300^{\frac{\circ}{\circ}}
$$

What is the measure each exterior angle of a regular polygon with 15 sides?
(A) 144°
(B) 156°
(C) 36°
(D) 24°
(Sol) Since the sum of exterior angles of any-sided polygon is 360°, each exterior angle of the polygon is $360^{\circ} \div 15=24^{\circ}$ Ans

pattern drill | Ace of Base

(1) What is the sum of the interior angles of a trapezoid?
(A) 180°
(B) 240°
(C) 360°
(D) 480°
(2) In the pentagon $\mathrm{ABCDE}, \angle \mathrm{B}=108^{\circ}, \angle \mathrm{C}=100^{\circ}, \angle \mathrm{D}=112^{\circ}$ and $\angle \mathrm{E}=120^{\circ}$. What is the degree measure of $\angle \mathrm{A}$?
(A) 90
(B) 100
(C) 110
(D) 120

(3) What is the average(arithmetic mean) of the interior angles of a nonagon?
(A) 114°
(B) 135°
(C) 140°
(D) 150°
(4) If the sum of interior angles of a polygon is $2,700^{\circ}$, what is the number of sides of the polygon?
(A) 15
(B) 17
(C) 19
(D) 21
(1) In isosceles trapezoid $\mathrm{ABCD}, \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$ and $\mathrm{AD}=\mathrm{BC}$.

What is the sum of measures of $\angle \mathrm{A}$ and $\angle \mathrm{C}$?
(A) 90°
(B) 100°
(C) 180°
(D) 200°
(2) In rhombus $\mathrm{ABCD}, \angle \mathrm{B}=130^{\circ}$. What is the value of x ?
(A) 30
(B) 50
(C) 60
(D) 70

(1) Which of the following is the measure of an interior angle in a regular decagon (10-sided polygon)?
(A) 36°
(B) 48°
(C) 135°
(D) 144°
(2) In regular pentagon ABCDE , what is the measure of $\angle \mathrm{AFC}$?
(A) 108°
(B) 114°
(C) 120°
(D) 136°

(3) If each exterior angle of a regular polygon is 20°, what is the number of sides of the polygon?

. spark!. Special regular polygons
(1) Regular hexagon $\downarrow 6$ equilateral triangles

(2) Regular octagon \downarrow Square - 4 isosceles right triangles

In the figure, if two parallel lines l and k pass two vertices of a regular pentagon ABCDE , then what is the value of x ?
(A) 12
(B) 18
(C) 20
(D) 22
(E) 28

Accent One exterior angle of regular n-sided polygon $=\frac{360^{\circ}}{n}$
Simple In the figure, since an exterior angle of a regular pentagon is $\frac{360^{\circ}}{5}=72^{\circ}$,
Solution

$\angle \mathrm{CDG}=72^{\circ}$
Since two lines l and k are parallel,
$\angle \mathrm{CGH}=\angle \mathrm{BFD}=92^{\circ}(\leftarrow$ Corresponding angles $)$
In triangle CDG, $\angle \mathrm{DCG}+\angle \mathrm{CDG}=\angle \mathrm{CGH}$
$\therefore x^{\circ}+72^{\circ}=92^{\circ} \quad \therefore x^{\circ}=92^{\circ}-72^{\circ}=20^{\circ}$
Ans (C)

(1) In pentagon HOUSE, $\angle \mathrm{H}, \angle \mathrm{U}$ and $\angle \mathrm{S}$ are right angles. If $\angle \mathrm{O}$ and $\angle \mathrm{E}$ are x° respectively, then what is the value of x ?
(A) 95
(B) 115
(C) 125
(D) 135
(E) 145
(2) In the figure, what is the sum of the measures, in degrees, of the six angles A, B, C, D, E and F?
(A) 270
(B) 360
(C) 450
(D) 540
(E) 630

Super Model

1

Sum of interior angles
\ $(n-2) \times 180^{\circ}$
In the figure, what is the value of

In the figure,
$a^{\circ}+b^{\circ}=x^{\circ}+y^{\circ}$
$\therefore a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+f^{\circ}+g^{\circ}+h^{\circ}+i^{\circ}$
$a+b+c+d+e+f+g+h+i$?
(A) 720
(C) 900
(B) 810
(D) 1080
$=x^{\circ}+y^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+f^{\circ}+g^{\circ}+h^{\circ}+i^{\circ}$
$=\frac{\left(x^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}\right)}{\text { quadrilateral }}+\frac{\left(y^{\circ}+f^{\circ}+g^{\circ}+h^{\circ}\right.}{\text { pentagon }}$

$$
=(4-2) \times 180^{\circ}+(5-2) \times 180^{\circ}=2 \cdot 180^{\circ}+3 \cdot 180^{\circ}
$$

$=360^{\circ}+540^{\circ}=900^{\circ}$
Ans) (C)

2

Sum of interior angles
$\downarrow(n-2) \times 180^{\circ}$

The interior angles of a polygon, measured in degrees, form an arithmetic progression. If the smallest angle is 126° and the greatest angle is 174°, then what is the number of sides of the polygon?
(A) 10
(B) 12
(C) 14
(D) 16

If the polygon has n sides, the sum of interior angles of the polygon is

$$
\frac{n}{2}\left(126^{\circ}+174^{\circ}\right)=(n-2) \times 180^{\circ}
$$

$\therefore \frac{n}{2} \times 300^{5}=(n-2) \times 18 Q^{\circ}$
$\therefore \frac{n}{2} \times 5=(n-2) \times 3 \quad \therefore 5 n=6(n-2)$
$\therefore 5 n=6 n-12 \quad \therefore n=12 \quad$ Ans (B)

Sum of an interior angle and its exterior angle

\downarrow Interior angle + Exterior angle $=180^{\circ}$
If the measures of the angles of a pentagon are If the five interior angles are $2 k^{\circ}, 3 k^{\circ}, 4 k^{\circ}, 5 k^{\circ}$ in the ratio of $2: 3: 4: 5: 6$, then what is the smallest exterior angle of the pentagon?
(A) 18°
(B) 20°
(C) 24°
(D) 27°
and $6 k^{\circ}$,
$2 k^{\circ}+3 k^{\circ}+4 k^{\circ}+5 k^{\circ}+6 k^{\circ}=(5-2) \times 180^{\circ}$
$\therefore 28 k^{\circ}=3 \times 180^{\circ}=549^{27} \quad \therefore k^{\circ}=27^{\circ}$
\therefore Since the largest interior angle is $6 k^{\circ}$
$=6 \times 27^{\circ}=162^{\circ}$, the smallest exterior angle is $180^{\circ}-162^{\circ}=18^{\circ}$

Ans (A)
\ Rhombus and Parallelogram \Rightarrow Sum of two consecutive angles $=180^{\circ}$

In parallelogram MATH, MS = AT and $\angle \mathrm{SMA}=63^{\circ}$, what is the measure of $\angle \mathrm{HMS}$?
(A) 42°
(B) 54°
(C) 63°
(D) 76°

,
$\therefore \angle \mathrm{A}=\angle \mathrm{AMS}=63$
Since $\overline{\mathrm{MA}} \| \overline{\mathrm{ST}}, \angle \mathrm{A}+\angle \mathrm{T}=180^{\circ}$
$\therefore \angle \mathrm{T}=180^{\circ}-63^{\circ}=117^{\circ} \therefore \angle \mathrm{M}=\angle \mathrm{T}=117^{\circ}$
$\therefore \angle \mathrm{HMS}=117^{\circ}-63^{\circ}=54^{\circ}$

the

melting

zone

In the figure, what is the average (arithmetic mean) of the measures of acute angles of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$?
(A) 24°
(B) 30°
(C) 36°
(D) 40°
(E) 54°

SHOWCASE-I

1

From the five exterior triangles of pentagon FGHIJ,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+2(x+y+z+u+v)=5 \times 180^{\circ}$
Since the sum of the exterior angles of a pentagon is 360°,
$x+y+z+u+v=360^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+2 \times 360^{\circ}=5 \times 180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=900^{\circ}-720^{\circ}=180^{\circ}$
\therefore The average of five angles $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$ is $180^{\circ} \div 5=36^{\circ}$
2 What is the number of sides of a polygon for which the sum of the measures of its interior angles is 2160° ?
(A) 12
(B) 14
(C) 16
(D) 18
(E) 20

3
In parallelogram $\mathrm{ABCD}, \angle \mathrm{A}=3 x^{\circ}-20^{\circ}, \angle \mathrm{C}=7 x^{\circ}-100^{\circ}$ and $\overline{\mathrm{DE}}$ bisects $\angle \mathrm{ADC}$. What is the measure of $\angle \mathrm{DEB}$?
(A) 110°
(B) 120°
(C) 130°
(D) 140°
(E) 150°

In the figure, if two rays $\overrightarrow{\mathrm{AF}}$ and $\overrightarrow{\mathrm{DE}}$ are parallel, then what is the average (arithmetic mean) of a, b, c and d ?
(A) 120
(B) 125
(C) 135
(D) 150
(E) 165

In the figure, what is the sum of the measure of ten angles of $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}+\angle \mathrm{G}+\angle \mathrm{H}+\angle \mathrm{I}+\angle \mathrm{J}$?
(A) 720°
(B) 900°
(C) $1,080^{\circ}$
(D) $1,260^{\circ}$
(E) $1,440^{\circ}$

If the regular pentagon ABCDE is folded as shown, then what is the measure of $\angle \mathrm{A}^{\prime} \mathrm{BC}$?
(A) 24°
(B) 28°
(C) 32°
(D) 36°
(E) 40°

In the regular decagon ABCDEFGHIJ (10-sided polygon), what is the measure of $\angle \mathrm{BED}$?
(A) 20°
(B) 24°
(C) 30°
(D) 36°
(E) 48°

1In the figure, what is the measure of the greatest angle in quadrilateral QUAD?
(A) 100°
(B) 110°
(C) 120°
(D) 130°
(E) 140°

2
In the figure, what is the average(arithmetic mean) of a, b, c, d, e and f ?
(A) 105
(B) 84
(C) 75
(D) 70
(E) 55

3
In regular hexagon ABCDEF as shown, what is the degree measure of $\angle \mathrm{FBE}$?
(A) 15
(B) 17.5
(C) 20
(D) 22.5
(E) 30

4
Which type of polygon has an interior angle that is always four times the measure of its exterior angle?
(A) A regular pentagon
(B) A regular hexagon
(C) A regular octagon
(D) A regular decagon
(E) A regular dodecagon

5 In the figure, $\angle \mathrm{A}=110^{\circ}, \angle \mathrm{B}=50^{\circ}, \angle \mathrm{D}=40^{\circ}$ and $\angle \mathrm{E}=80^{\circ}$. What is the value of x ?

6
An equilateral triangle and a square have a common side as shown. What is the measure of $\angle \mathrm{DAC}$?

7 In the figure, a regular pentagon ABCDE and an isosceles triangle CFD have a common side $\overline{\mathrm{CD}}$ as shown. If $\mathrm{FC}=\mathrm{FD}$ and $\angle \mathrm{CFD}=48^{\circ}$, what is the measure of $\angle \mathrm{ADF}$?

Math Mania! *

8 In the figure, what is the value of x ?

9 In regular octagon ABCDEFGH , what is the sum of $a+b+c+d+e+f$?

All-Round Checks
 E WA.MIT. A. TIO.N

In the polygon ABCD as shown, what is the average(arithmetic mean) of a, b and c ?
(A) 6
(B) 14
(C) 21
(D) 28
(E) 42

2 In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=3 x^{\circ}+10^{\circ}$, $\angle \mathrm{B}=x^{\circ}-15^{\circ}, \angle \mathrm{C}=4 x^{\circ}-45^{\circ}$ and $\angle \mathrm{D}=2 x^{\circ}+50^{\circ}$. What is the measure of the greatest angle in quadrilateral ABCD ?
(A) 118°
(B) 122°
(C) 128°
(D) 135°
(E) 140°

3 In an isosceles trapezoid $A B C D$ with $\mathrm{AD}=\mathrm{BC}, \angle \mathrm{A}=(4 x+6)^{\circ}, \angle \mathrm{C}=(2 x-18)^{\circ}$ and $\overline{\mathrm{BE}}$ bisects $\angle \mathrm{B}$. What is the measure of $\angle \mathrm{BED}$?
(A) 113°
(B) 112°
(C) 111°

(D) 110°
(E) 109°

4
If the rectangular sheet is folded as shown, then what is the value of x ?
(A) 140
(B) 130
(C) 120
(D) 110

(E) 100

If the sum of all but one of the interior angles of a convex polygon is 2450°, what is the value of the remaining angle in the polygon?
(A) 50°
(B) 70°
(C) 110°
(D) 130°
(E) 150°

In the figure, $\angle \mathrm{A}=58^{\circ}, \angle \mathrm{B}=84^{\circ}, \angle \mathrm{C}=64^{\circ}$ and $\angle \mathrm{D}=78^{\circ}$ and $\angle \mathrm{E}: \angle \mathrm{F}=3: 1$. What is the measure of $\angle \mathrm{E}$?
(A) 48°
(B) 51°
(C) 54°
(D) 57°
(E) 60°

7 In five sided-polygon $\mathrm{ABCDE}, \angle \mathrm{A}=4 x^{\circ}$, $\angle \mathrm{B}=7 x^{\circ}, \angle \mathrm{C}=6 x^{\circ}, \angle \mathrm{D}=3 x^{\circ}$ and \angle DEA $=5 x^{\circ}$. What is the value of x ?
(A) 12
(B) 12.5
(C) 15
(D) 16
(E) 18

8
Which of the following cannot be the measure of an exterior angle of a regular polygon?
(A) 18°
(B) 24°
(C) 32°
(D) 45°
(E) 72°

In the figure, O is the center of a circle and a quadrilateral OABC is inscribed in the sector. If $\angle A O C=62^{\circ}$, then what is the measure of $\angle \mathrm{ABC}$?
(A) 128°
(B) 132°
(C) 148°
(D) 149°

(E) 162°

10 In regular pentagon ABCDE , triangle FCD is an equilateral triangle. What is the measure of $\angle \mathrm{AFB}$?
(A) 60°
(B) 74°
(C) 78°
(D) 84°
(E) 86°

11 If the average(arithmetic mean) of the measures of the interior angles of a n-sided polygon is x°, what is the sum of the interior angles of a $n+3$ sided polygon?
(A) $3 x^{\circ}+270^{\circ}$
(B) $3 x^{\circ}+360^{\circ}$
(C) $n x^{\circ}+270^{\circ}$
(D) $n x^{\circ}+540^{\circ}$
(E) $n x^{\circ}+1,080^{\circ}$

12 In regular pentagon $\mathrm{ABCDE}, \angle \mathrm{AOD}=30^{\circ}$.
What is the value of x ?
(A) 84
(B) 72
(C) 68
(D) 66

(E) 64

In the figure, if $\angle \mathrm{F}=40^{\circ}$, what is the average (arithmetic mean) of degree measures of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$?
(A) 60
(B) 64
(C) 72
(D) 75
(E) 80

In the figure, what is the average (arithmetic mean) of a, b, c, d and e ?
(A) 27
(B) 36
(C) 42
(D) 54
(E) 60

A regular pentagon ABCDI and a regular hexagon IDEFGH have a common side $\overline{\mathrm{ID}}$ as shown. What is the measure of $\angle \mathrm{DCE}$?
(A) 18°
(B) 20°
(C) 24°
(D) 32°
(E) 36°

In the figure, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are vertices of a regular polygon. Two sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DE}}$ are extended to meet at P as shown. If $\angle \mathrm{BPC}=140^{\circ}$, how many sides does the regular polygon have?
(A) 12
(B) 16
(C) 20

(D) 24
(E) 27

17
In parallelogram $\mathrm{ABCD}, \angle \mathrm{A}=11 x^{\circ}$, $\angle \mathrm{B}=4 x^{\circ}, \angle \mathrm{C}=6 z^{\circ}$ and $\angle \mathrm{D}=3 y^{\circ}$. What is the value of $y+z$?

18
In the figure, what is the value of $x+y$?

19
(1) An equilateral triangle ABC is inscribed in regular pentagon ADEFG. If $\overline{\mathrm{BC}} \| \overline{\mathrm{EF}}$, then what is the value of x ?

(2) Point P is inside regular octagon ABCDEFGH so that triangle ABP is equilateral. How many degrees are in angle BCP?

20
A parallelogram sheet $A B C D$ is folded as shown. If $\angle \mathrm{A}=110^{\circ}$ and $\angle \mathrm{GFE}=25^{\circ}$, what is the measure of $\angle \mathrm{C}^{\prime} \mathrm{HG}$?

How many regular polygons are there that have integer degrees as their interior angles?

22 (1) In the figure, what is the value of x ?

(2) In the figure, what is the value of $a+b+c+d+e+f ?$

${ }^{2}$
In regular pentagon ABCDE , two lines $\overleftrightarrow{\mathrm{FA}}$ and $\overleftrightarrow{D G}$ are parallel and $\angle \mathrm{FAE}=3 x^{\circ}$ and $\angle \mathrm{CDG}=x^{\circ}$. What is the value of x ?

In the figure, what is the sum of the measures of seven angles $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$, $\angle \mathrm{E}, \angle \mathrm{F}$, and $\angle \mathrm{G}$?

18. In triangle $\mathrm{EBH}, \angle \mathrm{BHC}=26^{\circ}+36^{\circ}=62^{\circ}$

In triangle HGC,
$\angle \mathrm{HGF}=34^{\circ}+62^{\circ}=96^{\circ}$
In triangle ADG,
$x^{\circ}+y^{\circ}+\angle \mathrm{AGD}=180^{\circ} \mathrm{E} \angle 36^{\circ}$
$\therefore x^{\circ}+y^{\circ}+96^{\circ}=180^{\circ}$
$\therefore x^{\circ}+y^{\circ}=180^{\circ}-96^{\circ}=84^{\circ}$
Since $x: y=4: 3$,

if $x=4 k^{\circ}$ and $y=3 k^{\circ}, x^{\circ}+y^{\circ}=8 k^{\circ}=84^{\circ}$
$\therefore k^{\circ}=12^{\circ} \quad \therefore x^{\circ}=4 k^{\circ}=4 \times 12^{\circ}=48^{\circ}$
Ans 48
19. In rectangle $\mathrm{ABCD}, \angle \mathrm{D}=90^{\circ}$

In right triangle AED, $2 x^{\circ}+3 x^{\circ}=90^{\circ}$
$\therefore 5 x^{\circ}=90^{18} \quad \therefore x^{\circ}=18^{\circ}$
And $\angle \mathrm{BEC}=\angle \mathrm{ABE}=4 x^{\circ}$
(\leftarrow Alternate angles)
$\therefore 3 x^{\circ}+\angle A E B+4 x^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{AEB}+7 x^{\circ}=180^{\circ}$

$\therefore \angle \mathrm{AEB}=180^{\circ}-7 x^{\circ}=180^{\circ}-7 \times 18^{\circ}$
$=180^{\circ}-126^{\circ}=54^{\circ}$
Ans 54°
20.

21. In the figure, $\angle \mathrm{DAB}=\angle \mathrm{ABC}$ $(\leftarrow$ Alternate angles) and $\angle \mathrm{DAB}=\angle \mathrm{CAB}$ $(\leftarrow$ Symmetric angles)
$\therefore \angle \mathrm{CAB}=\angle \mathrm{CBA}$

\therefore Triangle CAB is an isosceles triangle.
$\therefore x^{\circ}=180^{\circ}-2 \times 48^{\circ}=180^{\circ}-96^{\circ}=84^{\circ}$
22. In the figure, if $\angle \mathrm{ABC}=x^{\circ}$ and $\angle \mathrm{ACB}=y^{\circ}$, in triangle ABC ,
$x^{\circ}+y^{\circ}=180^{\circ}-54^{\circ}=126^{\circ}$
If $\angle \mathrm{CBD}=a^{\circ}$ and $\angle \mathrm{BCD}=b^{\circ}$,
$\left(2 a^{\circ}+x^{\circ}\right)+\left(2 b^{\circ}+y^{\circ}\right)=360^{\circ}$ $(\leftarrow$ Two straight angles)
$2 a^{\circ}+2 b^{\circ}=360^{\circ}-\left(x^{\circ}+y^{\circ}\right)$

$=360^{\circ}-126^{\circ}=234^{\circ} \quad \therefore a^{\circ}+b^{\circ}=\frac{234^{\circ}}{2}=117^{\circ}$
In triangle $\mathrm{BCD}, \angle \mathrm{BDC}=180^{\circ}-\left(a^{\circ}+b^{\circ}\right)$
$=180^{\circ}-117^{\circ}=63^{\circ}$
Ans) 63°
23. Since triangle $A B D$ is isosceles,
$\angle \mathrm{ADB}=\angle \mathrm{A}=62^{\circ}$.
$\therefore \angle \mathrm{ABD}=180^{\circ}-2 \times 62^{\circ}$ $=180^{\circ}-124^{\circ}=56^{\circ}$.
Since $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$,

$\angle \mathrm{BDC}=\angle \mathrm{ABD}=56^{\circ}(\leftarrow$ Alternate angles $)$
Since triangle BCD is isosceles,
$\angle \mathrm{DBC}=180^{\circ}-2 \times 56^{\circ}=180^{\circ}-112^{\circ}=68^{\circ}$
Ans) 68°
24. In the figure, if $\angle \mathrm{BAD}=x^{\circ}$ and $\angle \mathrm{ABD}=y^{\circ}$,
in triangle ADB, $x^{\circ}+y^{\circ}+134=180^{\circ}$
$\therefore x^{\circ}+y^{\circ}=180^{\circ}-134^{\circ}=46^{\circ}$
In triangle ABC ,
$2 x^{\circ}+2 y^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\therefore 2\left(x^{\circ}+y^{\circ}\right)+\angle \mathrm{C}=180^{\circ}$
$\therefore \angle \mathrm{C}=180^{\circ}-2\left(x^{\circ}+y^{\circ}\right)$
$=180^{\circ}-2 \times 46^{\circ}$
$=180^{\circ}-92^{\circ}=88^{\circ}$

Ans) 88
polygons

pattern drill

(1) (1) Since a trapezoid is a quadrilateral, the sum of the interior angles is $(4-2) \times 180^{\circ}$
$=2 \times 180^{\circ}=360^{\circ}$
Ans (C)
(2) Since the sum of five interior angles of the pentagon is
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}$
$=(5-2) \times 180^{\circ}$

$\therefore \angle \mathrm{A}+108^{\circ}+100^{\circ}+112^{\circ}+120^{\circ}=3 \times 180^{\circ}$
$\therefore \angle \mathrm{A}+440=540 \quad \therefore \angle \mathrm{~A}=540^{\circ}-440^{\circ}=100^{\circ}$
Ans (B)
SOLUTIONS. EXPLANATIONS• ANSWERS
103
(3) Since a nonagon is a 9-sided polygon, the average (arithmetic mean) of the interior angles is $\left[(9-2) \times 180^{\circ}\right] \div 9$ $=\frac{7 \times 180^{\circ} 20}{2}=7 \times 20^{\circ}=140^{\circ}$

Ans)
(C)
(4) If the polygon has n sides, the sum of interior angles is $(n-2) \times 180^{\circ}=2,700^{\circ}$, $n-2=\frac{2,70 Q^{\circ} 30}{18 Q^{\circ} 2}=\frac{30}{2}=15$ $\therefore n=15+2=17$

Ans) (B)
(2) (1) Since quadrilateral $A B C D$ is isosceles trapezoid, $\angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D}$
 Since $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}, \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$ $(\leftarrow$ Sum of co-interior angles)

$$
\therefore \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}
$$

Ans (C)
(2) In rhombus $\mathrm{ABCD}, \overline{\mathrm{BC}} \| \overline{\mathrm{AD}}$.
$\therefore \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$(\leftarrow$ Sum of co-interior angles)
$\therefore x^{\circ}+130^{\circ}=180^{\circ}$
$\therefore x^{\circ}=180^{\circ}-130^{\circ}=50^{\circ}$
Ans)
(B)
(3) In parallelogram $\mathrm{ABCD}, \mathrm{A}$ $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}} \therefore \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$(\leftarrow$ Sum of co-interior angles) D
$\therefore x^{\circ}+3 x^{\circ}=180^{\circ} \quad \therefore 4 x^{\circ}=180^{\circ} 45 \quad \therefore x^{\circ}=45^{\circ}$
Since $\angle \mathrm{D}=\angle \mathrm{B}, 3 x^{\circ}=3 \times 45^{\circ}=135^{\circ}=5 y^{\circ}$
$\therefore y^{\circ}=\frac{135^{\circ} 27}{5}=27^{\circ}$
Ans (A)
(3) (1) Since the sum of interior angles of quadrilateral ABCD is 360°,
$60^{\circ}+100^{\circ}+\angle \mathrm{C}+50^{\circ}=360^{\circ}$
$210^{\circ}+\angle \mathrm{C}=360^{\circ}$
$\therefore \angle \mathrm{C}=360^{\circ}-210^{\circ}=150^{\circ}$
\therefore The exterior angle of $\angle \mathrm{C}$ is $180^{\circ}-150^{\circ}=30^{\circ}$

Ans)
(A)
(2) Since the sum of the exterior angles of any sided polygon is 360°, the average (arithmetic mean) of exterior angles of an octagon is $360^{\circ} \div 8=45^{\circ}$

Ans (A)
(3) Since the sum of the all exterior angles of the hexagon is 360°,
$\left(180^{\circ}-100^{\circ}\right)+\left(180^{\circ}-140^{\circ}\right)$
$+60^{\circ}+40^{\circ}+70^{\circ}+x^{\circ}=360^{\circ}$

$\therefore 80^{\circ}+40^{\circ}+60^{\circ}+40^{\circ}+70^{\circ}+x^{\circ}=360^{\circ}$
$\therefore 290^{\circ}+x^{\circ}=360^{\circ} \quad \therefore x^{\circ}=360^{\circ}-290^{\circ}=70^{\circ}$
Ans (C)
(4) (1) An interior angle in a regular decagon is $180^{\circ}-\left(360^{\circ} \div 10\right)=180^{\circ}-36^{\circ}=144^{\circ}$

Ans) (D)
(D)
(2) In regular pentagon ABCDE ,

$$
\begin{aligned}
\angle \mathrm{D} & =180^{\circ}-\left(360^{\circ} \div 5\right) \\
& =180^{\circ}-72^{\circ}=108^{\circ}
\end{aligned}
$$

In isosceles triangle CDE,

$\angle \mathrm{DCE}=\frac{1}{2}\left(180^{\circ}-108^{\circ}\right)=\frac{1}{2} \times 72^{\circ}=36^{\circ}$
$\angle \mathrm{FDC}=108^{\circ}-36^{\circ}=72^{\circ}$
In triangle $\mathrm{CDF}, \angle \mathrm{AFC}=36^{\circ}+72^{\circ}=108^{\circ}$
Ans (A)
(3) Since the sum of all exterior angles of n-sided polygon is 360°, each exterior angle of the polygon is $360^{\circ} \div n=20^{\circ}$
$\therefore n=\frac{360^{\circ 18}}{2 \theta^{\circ}}=18$
Ans) 18

P. 212

training

1. Since the sum of the interior angles in a pentagon HOUSE is $(5-2) \times 180^{\circ}=540^{\circ}$,
$2 \times x^{\circ}+3 \times 90^{\circ}=540^{\circ}$
$\therefore 2 x^{\circ}=540^{\circ}-270^{\circ}=270^{\circ}$
$\therefore x=\frac{27 Q^{135}}{Z}=135$

2. In triangle AEH ,
$\angle \mathrm{A}+\angle \mathrm{E}=\angle \mathrm{AHC}$.
In triangle FDG ,
$\angle \mathrm{F}+\angle \mathrm{D}=\angle \mathrm{DGB}$

$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}$
$=(\angle \mathrm{A}+\angle \mathrm{E})+\angle \mathrm{B}+\angle \mathrm{C}+(\angle \mathrm{D}+\angle \mathrm{F})$
$=\angle \mathrm{AHC}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{DGB}(\leftarrow \mathrm{Sum}$ of interior angles of quadrilateral GHCB)
$=(4-2) \times 180^{\circ}=360^{\circ}$
Ans (B)
3. Since the sum of the interior angles in n-sided polygon is $(n-2) \times 180^{\circ}$,
$(n-2) \times 18 Q^{\circ}=216 Q^{\circ} \therefore n-2=\frac{216^{12}}{18}$ $\therefore n-2=12 \quad \therefore n=12+2=14$

Ans)
(B)
3.

In parallelogram $\mathrm{ABCD}, \angle \mathrm{A}=\angle \mathrm{C}$
$\therefore 3 x^{\circ}-20^{\circ}=7 x^{\circ}-100^{\circ} \quad \therefore 4 x^{\circ}=8 Q^{\circ} \quad \therefore x^{\circ}=20^{\circ}$
$\therefore \angle \mathrm{A}=3 x^{\circ}-20^{\circ}=3 \times 20^{\circ}-20^{\circ}=40^{\circ}$
Since $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}, \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$(\leftarrow$ Sum of co-interior angles)
$\therefore \angle \mathrm{D}=180^{\circ}-40^{\circ}=140^{\circ}$
Since DE bisects $\angle \mathrm{ADC}, \angle \mathrm{EDC}=\frac{1}{2} \times 140^{\circ}=70^{\circ}$
Since $\angle \mathrm{EDC}+\angle \mathrm{DEB}=180^{\circ}$
$(\leftarrow$ Sum of co-interior angles),
$\angle \mathrm{DEB}=180^{\circ}-\angle \mathrm{EDC}=180^{\circ}-70^{\circ}=110^{\circ}$
4. Since $\overline{\mathrm{AF}} \| \overline{\mathrm{DE}}, \angle \mathrm{F}+\angle \mathrm{E}=180^{\circ}$ $(\leftarrow$ Sum of co-interior angles) In hexagon ABCDEF ,
$a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+\left(e^{\circ}+f^{\circ}\right)$
$=a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+180^{\circ}$

$=(6-2) \times 180^{\circ}$
$\therefore a+b+c+d=4 \times 180^{\circ}-180^{\circ}$
$=720^{\circ}-180^{\circ}=540^{\circ}$
\therefore The average(arithmetic mean) of a, b, c and d is $540 \div 4=135$

Ans) (C)
5. In the figure, $\angle \mathrm{JGK}+\angle \mathrm{GJK}=\angle \mathrm{KAF}+\angle \mathrm{KFA}$. The sum of 10 angles of $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+$ $\angle \mathrm{E}+\angle \mathrm{F}+\angle \mathrm{G}+\angle \mathrm{H}+\angle \mathrm{I}+\angle \mathrm{J}$ is equal to the sum of interior angles of hexagon ABCDEF and quadrilateral GHIJ.
$\therefore 180^{\circ} \times(6-2)+180^{\circ} \times(4-2)$

$$
=180^{\circ} \times 4+180^{\circ} \times 2=720^{\circ}+360^{\circ}=1080^{\circ}
$$

Ans) (C)
6. In regular pentagon ABCDE ,
$\angle \mathrm{A}^{\prime}=\angle \mathrm{A}=\left[(5-2) \times 180^{\circ}\right] \div 5$
$=\frac{3 \times 180^{\circ} 36}{5}=3 \times 36^{\circ}=108^{\circ}$ and $\triangle A^{\prime} B E$ is an isosceles triangle,

$\angle \mathrm{A}^{\prime} \mathrm{BE}=\angle \mathrm{ABE}=\frac{1}{2} \times\left(180^{\circ}-108^{\circ}\right)$
$=\frac{1}{2} \times 72^{\circ}=36^{\circ}$
$\therefore \angle \mathrm{A}^{\prime} \mathrm{BG}=\angle \mathrm{ABC}-\angle \mathrm{ABA}^{\prime}=108^{\circ}-2 \times 36^{\circ}$
$=108^{\circ}-72^{\circ}=36^{\circ}$
Ans) (D)
7. In regular decagon ABCDEFGHIJ,
each interior angle is
$\left[(10-2) \times 180^{\circ}\right] \div 10$
$=\frac{8 \times 180^{\circ}}{10}=8 \times 18^{\circ}=144^{\circ}$
If $\angle \mathrm{BED}=x^{\circ}$,

since quadrilateral BCDE is an isosceles
trapezoid, $2 x^{\circ}+2 \times 144=360^{\circ}$
$\therefore 2 x^{\circ}=360^{\circ}-288^{\circ}=72^{\circ}$
$\therefore \angle \mathrm{BED}=x^{\circ}=\frac{72^{\circ}}{2}=36^{\circ}$
Ans) (D)

P. 215
 JUMP

1. In quadrilateral QUAD,
$\angle \mathrm{Q}+\angle \mathrm{U}+\angle \mathrm{A}+\angle \mathrm{D}=360^{\circ}$
$\therefore(x-40)^{\circ}+(x-20)^{\circ}$
$+90^{\circ}+(x+30)^{\circ}=360^{\circ}$
$\therefore 3 x^{\circ}+60^{\circ}=360^{\circ}$

$\therefore 3 x^{\circ}=360^{\circ}-30^{\circ}=300^{\circ} \quad \therefore x^{\circ}=100^{\circ}$
Since $(x-40)^{\circ}<(x-20)^{\circ}<(x+30)^{\circ}$,
the greatest angle in quadrilateral QUAD is
$\angle \mathrm{D}=x^{\circ}+30^{\circ}=100^{\circ}+30^{\circ}=130^{\circ}$
Ans) (D)
2. Since the sum of interior angles of a pentagon
is $180^{\circ} \times(5-2)=180^{\circ} \times 3=540^{\circ}$,
$a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+f^{\circ}=540^{\circ}-120^{\circ}=420^{\circ}$
\therefore The average (arithmetic mean) of a, b, c, d, e and f is $420 \div 6=70$.

Ans) (D)
3. Since an interior angle of the regular hexagon is $\left[(6-2) \times 180^{\circ}\right] \div 6=\frac{4 \times 780^{3}}{6}$ $=4 \times 30^{\circ}=120^{\circ}, \angle \mathrm{A}=120^{\circ}$

Since triangle ABF is isosceles,
$\angle \mathrm{ABF}=\frac{1}{2} \times\left(180^{\circ}-120^{\circ}\right)$
$=\frac{1}{2} \times 60^{\circ}=30^{\circ}$ and $\angle \mathrm{ABE}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\therefore \angle \mathrm{FBE}=\angle \mathrm{ABE}-\angle \mathrm{ABF}=60^{\circ}-30^{\circ}=30^{\circ}$
4. In the figure, $a: b=4: 1$

If $a=4 k^{\circ}, b=k^{\circ} \quad \therefore 4 k^{\circ}+k^{\circ}=180^{\circ}$
$\therefore 5 k^{\circ}=180^{\circ} 36^{\circ} \therefore k^{\circ}=36^{\circ} \quad \therefore b^{\circ}=36^{\circ}$
Since the sum of exterior angles of any sided polygon is 360°,

$360^{\circ} \div n=36^{\circ} \quad \therefore n=10$
\therefore The polygon is a regular decagon.

$$
\text { (} \leftarrow 10 \text {-sided polygon) }
$$

Ans (D)
5. Since the figure ABCDE is a pentagon, the sum of the interior angles is

$110^{\circ}+50^{\circ}+\left(360^{\circ}-x^{\circ}\right)+40^{\circ}+80^{\circ}$
$=280^{\circ}+\left(360^{\circ}-x^{\circ}\right)=640^{\circ}-x^{\circ}$
$\therefore 640^{\circ}-x^{\circ}=180^{\circ} \times(5-2)=3 \times 180^{\circ}=540^{\circ}$
$\therefore x^{\circ}=640^{\circ}-540^{\circ}=100^{\circ}$
(Ans) 100
6. In the figure, since $\triangle \mathrm{ABE}$ is an equilateral triangle and quadrilateral $B C D E$ is a square, $\angle \mathrm{ABE}=60^{\circ}$ and $\angle \mathrm{EBC}=90^{\circ}$.
$\therefore \angle \mathrm{ABC}=60^{\circ}+90^{\circ}=150^{\circ}$
Since $A B=B C$ and $A E=E D$,
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{AED}$ are isosceles triangles.

$$
\begin{aligned}
\therefore & \angle \mathrm{BAC}=\angle \mathrm{BCA}=\angle \mathrm{EAD}=\angle \mathrm{EDA} \quad \mathrm{D} \\
& =\frac{1}{2}\left(180^{\circ}-150^{\circ}\right)=\frac{1}{2} \times 30^{\circ}=15^{\circ} \\
\therefore & \angle \mathrm{DAC}=\angle \mathrm{A}-2 \angle \mathrm{BAC}=60^{\circ}-2 \times 15^{\circ} \\
& =60^{\circ}-30^{\circ}=30^{\circ}
\end{aligned}
$$

7. In the figure, an interior angle of the regular pentagon ABCDE is
$\left[(5-2) \times 180^{\circ}\right] \div 5$
$=\frac{3 \times 180^{\circ 36^{\circ}}}{5}=3 \times 36^{\circ}=108^{\circ}$
$\triangle \mathrm{AED}$ is an isosceles triangle.

$\therefore \angle \mathrm{EDA}=\frac{1}{2}\left(180^{\circ}-108^{\circ}\right)=\frac{1}{2} \times 72^{\circ}=36^{\circ}$

Since \triangle CFD is an isosceles triangle, $\angle \mathrm{CDF}=\frac{1}{2}\left(180^{\circ}-48^{\circ}\right)=\frac{1}{2} \times 132^{\circ}=66^{\circ}$
Since $\angle \mathrm{D}=\angle \mathrm{CDF}+\angle \mathrm{ADF}+\angle \mathrm{EDA}=108^{\circ}$, $66^{\circ}+\angle \mathrm{ADF}+36^{\circ}=108^{\circ} \therefore \angle \mathrm{ADF}+102^{\circ}=108^{\circ}$
$\therefore \angle \mathrm{ADF}=108^{\circ}-102^{\circ}=6^{\circ}$
Ans) 6°
8.

In the figure, since $\angle \mathrm{J}+\angle \mathrm{K}=\angle \mathrm{HGI}+\angle \mathrm{H}$, $30^{\circ}+70^{\circ}=\angle \mathrm{HGI}+40^{\circ} . \quad \therefore 100^{\circ}=\angle \mathrm{HGI}+40^{\circ}$
$\therefore \angle \mathrm{HGI}=100^{\circ}-40^{\circ}=60^{\circ}$
$\therefore \angle \mathrm{AGF}=\angle \mathrm{HGI}=60^{\circ}(\leftarrow$ Vertical angles $)$
In pentagon $\angle \mathrm{CDEFL}$,
$\angle \mathrm{CLF}+80^{\circ}+130^{\circ}+90^{\circ}+90^{\circ}=\angle \mathrm{CLF}+390^{\circ}$
$=540^{\circ}(\leftarrow$ Sum of interior angles in a pentagon $)$
$\therefore \angle C L F=540^{\circ}-390^{\circ}=150^{\circ}(\leftarrow$ Straight angle $)$
$\therefore \angle \mathrm{BLF}=180^{\circ}-150^{\circ}=30^{\circ}$
Ans) 120
In quadrilateral ABLG,
$x^{\circ}+150^{\circ}+30^{\circ}+60^{\circ}=360^{\circ}$
$(\leftarrow$ Sum of interior angles in a quadrilateral)
$\therefore x^{\circ}+240^{\circ}=360^{\circ} \quad \therefore x^{\circ}=360^{\circ}-240^{\circ}=120^{\circ}$
9. Since the regular octagon ABCDEFGH is inscribed in a circle, $a^{\circ}, b^{\circ}, c^{\circ}, d^{\circ}, e^{\circ}$, and f° are the same. (\leftarrow Inscribed angles)
$\angle \mathrm{G}=\left[(8-2) \times 180^{\circ}\right] \div 8$
$=\frac{6^{3} \times 180^{\circ} 45^{\circ}}{8^{*}}=3 \times 45^{\circ}=135^{\circ}$
In isosceles triangle HFG,
$f^{\circ}=\frac{1}{2} \times\left(180^{\circ}-135^{\circ}\right)=\frac{45^{\circ}}{2}$

$\therefore a^{\circ}=b^{\circ}=c^{\circ}=d^{\circ}=e^{\circ}=f^{\circ}=\frac{45^{\circ}}{2}$
$\therefore a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+f^{\circ}=6^{3} \times \frac{45^{\circ}}{2}$

$$
=3 \times 45^{\circ}=135^{\circ}
$$

Ans) 135

1. In quadrilateral ABCD ,
$\left\{a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}=360^{\circ}\right.$ …..(1)
$84^{\circ}+d^{\circ}=360^{\circ}$ …...(2)
(1) - (2); $a^{\circ}+b^{\circ}+c^{\circ}-84^{\circ}=0$ $\therefore a^{\circ}+b^{\circ}+c^{\circ}=84^{\circ}$

\therefore The average (arithmetic mean) of a, b and c is $(a+b+c) \div 3=84 \div 3=28$

Ans) (D)
2. Since the sum of interior angles in a quadrilateral ABCD is 360°,
$\left(3 x^{\circ}+10^{\circ}\right)+\left(x^{\circ}-15^{\circ}\right)+\left(4 x^{\circ}-45^{\circ}\right)+\left(2 x^{\circ}+50^{\circ}\right)$
$=360^{\circ} \quad \therefore 1 Q x^{\circ}=36 Q^{36} \quad \therefore x^{\circ}=36^{\circ}$
$\therefore \angle \mathrm{A}=3 \times 36^{\circ}+10^{\circ}=72^{\circ}+10^{\circ}=82^{\circ}$, $\angle B=36^{\circ}-15^{\circ}=21^{\circ}$,
$\angle \mathrm{C}=4 \times 36^{\circ}-45^{\circ}=144^{\circ}-45^{\circ}=99^{\circ}$, and $\angle \mathrm{D}=2 \times 36^{\circ}+50^{\circ}=72^{\circ}+50^{\circ}=122^{\circ}$
$\therefore 122^{\circ}(=\angle \mathrm{D})$ is the greatest angle in the quadrilateral ABCD .

Ans) (B)
3. In isosceles trapezoid $\mathrm{ABCD}, \angle \mathrm{C}=\angle \mathrm{D}$ and $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$(\leftarrow$ Co-interior angles)
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$

$\therefore(4 x+6)^{\circ}+(2 x-18)^{\circ}=180^{\circ}$
32°
$\therefore 6 x^{\circ}-12^{\circ}=180^{\circ} \therefore 6 x^{\circ}=180^{\circ}+12^{\circ}=192^{\circ}$
$\therefore x^{\circ}=32^{\circ}$
Since $\overline{\mathrm{BE}}$ bisects $\angle \mathrm{B}, \angle \mathrm{ABE}=\angle \mathrm{EBC}=\frac{1}{2} \angle \mathrm{~B}$
$=\frac{1}{2} \angle \mathrm{~A}=\frac{1}{2}(4 \times 32+6)^{\circ}=\frac{1}{2} \times 134^{\circ}=67^{\circ}$
Since $\angle \mathrm{ABE}+\angle \mathrm{BED}=180^{\circ}(\leftarrow$ Co-interior angles $)$,
$67^{\circ}+\angle \mathrm{BED}=180^{\circ} \therefore \angle \mathrm{BED}=180^{\circ}-67^{\circ}=113^{\circ}$
Ans) (A)
4.

In the figure, $\angle \mathrm{ABC}=\angle \mathrm{EBC}=x^{\circ}{ }_{\mathrm{D}}$
$(\leftarrow$ Symmetric angles)
If $\angle \mathrm{FCB}=\angle \mathrm{DCB}=y^{\circ}(\leftarrow$ Symmetric angles $)$,
$y^{\circ}+y^{\circ}+40^{\circ}=180^{\circ}(\leftarrow$ Straight angle $)$
$\therefore 8 y^{\circ}=180^{\circ}-40^{\circ}=140^{\circ} 70^{\circ} \quad \therefore y^{\circ}=70^{\circ}$
In trapezoid ABCD ,
$x^{\circ}+y^{\circ}=180^{\circ}(\leftarrow$ Co-interior angles $)$
$\therefore x^{\circ}+70^{\circ}=180^{\circ} \quad \therefore x=180^{\circ}-70^{\circ}=110^{\circ}$
Ans (D)
5. If the convex polygon has n sides, the sum of all interior angles is $(n-2) \times 180^{\circ}$.
$\therefore(n-2) \times 180>2450$
$\therefore n-2>\frac{245 Q}{18 Q}=13.6 \cdots .$.
$\therefore n>2+13.6 \cdots \cdots \quad \therefore n>15.6 \cdots \ldots . . \quad \therefore n=16$
\therefore The remaining angle of the polygon is

$$
\begin{aligned}
& (16-2) \times 180^{\circ}-2450^{\circ}=14 \times 180^{\circ}-2450^{\circ} \\
& =2520^{\circ}-2450^{\circ}=70^{\circ}
\end{aligned}
$$

6.

In the figure, if $\angle \mathrm{E}=a^{\circ}, \angle \mathrm{F}=b^{\circ} \angle \mathrm{GAD}=x^{\circ}$ and $\angle \mathrm{GDA}=y^{\circ}, a^{\circ}+b^{\circ}=x^{\circ}+y^{\circ}$.
\therefore In quadrilateral ABCD,

$$
\left(x^{\circ}+58^{\circ}\right)+84^{\circ}+64^{\circ}+\left(78^{\circ}+y^{\circ}\right)=360^{\circ}
$$

$(\leftarrow$ Sum of interior angles in quadrilateral ABCD)
$\therefore x^{\circ}+y^{\circ}+284^{\circ}=360^{\circ}$
$\therefore x^{\circ}+y^{\circ}=360^{\circ}-284^{\circ}=76^{\circ} \quad \therefore a^{\circ}+b^{\circ}=76^{\circ}$
If $a^{\circ}=3 k^{\circ}$ and $b^{\circ}=k^{\circ}$,
$a^{\circ}+b^{\circ}=3 k^{\circ}+k^{\circ}=4 k^{\circ}=76^{\circ} \quad \therefore k^{\circ}=19^{\circ}$
$\therefore a^{\circ}=3 k^{\circ}=3 \times 19^{\circ}=57^{\circ} \quad \therefore \angle \mathrm{E}=57^{\circ}$
Ans) (D)
7. In pentagon ABCDE , the sum of the interior angles is $4 x^{\circ}+7 x^{\circ}+6 x^{\circ}+3 x^{\circ}+\left(360^{\circ}-5 x^{\circ}\right)$ $=(5-2) \times 180^{\circ}$
$\therefore 15 x^{\circ}+360^{\circ}=3 \times 180^{\circ}=540^{\circ}$
$\therefore 15 x^{\circ}=540^{\circ}-360^{\circ}=180^{\circ 12} \quad \therefore x=12^{\circ}$
Ans) (A)
8. Since the sum of the exterior angles of any sided regular polygon is 360°, an exterior angle of a regular polygon is a factor of 360°
(A) $18^{\circ}=360^{\circ} \div 20$
(B) $24^{\circ}=360^{\circ} \div 15$
(C) $32^{\circ} \neq 360^{\circ} \div n$
(D) $45^{\circ}=360^{\circ} \div 8$
(E) $72^{\circ}=360^{\circ} \div 5$

Ans (C)
9. In the figure, two triangles $O A B$ and $O B C$ are isoscelces triangles. In quadrilateral OABC , if $\angle \mathrm{OAB}=\angle \mathrm{OBA}=a^{\circ}$ and $\angle \mathrm{OBC}=\angle \mathrm{OCB}=b^{\circ}$,
 $2\left(a^{\circ}+b^{\circ}\right)+62^{\circ}=360^{\circ}$
(\leftarrow Sum of interior angles in a quadrilateral)
$\therefore 2\left(a^{\circ}+b^{\circ}\right)=360^{\circ}-62^{\circ}=298^{\circ}$
$\therefore a^{\circ}+b^{\circ}=298^{\circ} \div 2=149^{\circ}$
$\therefore \angle \mathrm{ABC}=a^{\circ}+b^{\circ}=149^{\circ}$
Ans
(D)
10. In the figure, $\triangle F C D$ is an equilateral triangle.
$\therefore \angle \mathrm{FCD}=60^{\circ}$ and $\mathrm{DC}=\mathrm{FC}=\mathrm{BC}$.
$\therefore \triangle \mathrm{BCF}$ is an isosceles triangle.
Since $\angle C=\left[(5-2) \times 180^{\circ}\right] \div 5$
$=\frac{3 \times 180^{\circ} 36}{5}=3 \times 36^{\circ}=108^{\circ}$, $\angle \mathrm{FCB}=108^{\circ}-60^{\circ}=48^{\circ}$
In isosceles triangle CBF,
 $\angle \mathrm{CBF}=\frac{1}{2}\left(180^{\circ}-48^{\circ}\right)=\frac{1}{2} \times 132^{\circ}=66^{\circ}$ $\therefore \angle \mathrm{ABF}=108^{\circ}-66^{\circ}=42^{\circ}$
In triangle $A B F$,

$$
\begin{aligned}
\angle \mathrm{AEB} & =180^{\circ}-\left(\frac{1}{2} \times 108^{\circ}+42^{\circ}\right) \\
& =180^{\circ}-\left(54^{\circ}+42^{\circ}\right)=180^{\circ}-96^{\circ}=84^{\circ}
\end{aligned}
$$

Ans: (D)
11. Since the sum of the interior angles of a n-sided polygon is $n \times x^{\circ}$, the sum of the interior angles of a $(n+3)$-sided polygon is $n \times x^{\circ}+3 \times 180^{\circ}=n x^{\circ}+540^{\circ}$

Ans)
(D)
12.

Since $\angle B$ is an interior angle of a regular pentagon ABCDE is $\left[(5-2) \times 180^{\circ}\right] \div 5$
$=\frac{3 \times 180^{\circ} 36^{\circ}}{5}=3 \times 36^{\circ}=108^{\circ}$
In triangle $\mathrm{OBF}, \angle \mathrm{BFO}=180^{\circ}-\left(30^{\circ}+108^{\circ}\right)$
$=180^{\circ}-138^{\circ}=42^{\circ}$
In triangle CDF, $x^{\circ}+42^{\circ}=108^{\circ}$
$\therefore x^{\circ}=108^{\circ}-42^{\circ}=66^{\circ}$
Ans (
(D)
13. In triangle $\mathrm{EFH}, \angle \mathrm{IHA}=40^{\circ}+\mathrm{E}^{\circ}$

In triangle AHI, $\angle \mathrm{HIG}=\angle \mathrm{A}+\left(40^{\circ}+\angle \mathrm{E}\right)$

In quadrilateral BCDI ,
$\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\left(\angle \mathrm{A}+40^{\circ}+\angle \mathrm{E}\right)=360^{\circ}$
$\therefore \angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{A}+\angle \mathrm{E}=360^{\circ}-40^{\circ}$
$=320^{\circ}$
\therefore The average (arithmetic mean) of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$ is $(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}) \div 5=320^{\circ} \div 5$ $=64^{\circ}$
14. Since the sum of all exterior angles of the polygon is 360°,
$a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+90^{\circ}=360^{\circ}$
$\therefore a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}$

$$
=360^{\circ}-90^{\circ}=270^{\circ}
$$

The average(arithmetic mean) of a, b, c, d and e is $270 \div 5=54$

Ans: (D)
15. In regular pentagon ABCDI,
$\angle \mathrm{IDC}=\left[(5-2) \times 180^{\circ}\right] \div 5=\frac{3 \times 180^{\circ} 6^{3}}{5}$ B $=3 \times 36^{\circ}=108^{\circ}$
In regular hexagon IDEFGH,

$$
\therefore \angle \mathrm{IDE}=\left[(6-2) \times 180^{\circ}\right] \div 6
$$

$$
=\frac{4 \times 180^{\circ} 30^{\circ}}{6}=4 \times 30^{\circ}=120^{\circ}
$$

$$
\therefore \angle \mathrm{CDE}=360^{\circ}-\left(108^{\circ}+120^{\circ}\right)
$$

$$
=360^{\circ}-228^{\circ}=132^{\circ}(\leftarrow \text { Perigon })
$$

Since $\mathrm{CD}=\mathrm{DE}, \triangle \mathrm{DEC}$ is an isosceles triangle.
$\angle \mathrm{DCE}=\frac{1}{2} \times\left(180^{\circ}-132^{\circ}\right)=\frac{1}{2} \times 48^{\circ}=24^{\circ}$
Ans) (C)
16.

In the figure, if $\angle \mathrm{PDC}=\angle \mathrm{PBC}=x^{\circ}$, $\angle \mathrm{CDE}=180^{\circ}-x^{\circ}(\leftarrow$ exterior angle $)$

In quadrilateral BPDC, $x^{\circ}+140^{\circ}+x^{\circ}$ $=180^{\circ}-x^{\circ} \quad \therefore 3 x^{\circ}=40^{\circ} \quad \therefore x^{\circ}=\frac{40^{\circ}}{3}$
Since an exterior angle of the regular polygon is $\frac{40^{\circ}}{3}$, the number of sides of the polygon is $360^{\circ} \div \frac{40^{\circ}}{3}=360^{\circ} \times \frac{3}{40^{\circ}}=9 \times 3$ $=27$

Ans) (E)
17.

Since $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}, \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$(\leftarrow$ Sum of co-interior angles)
$\therefore 11 x^{\circ}+4 x^{\circ}=180^{\circ} \quad \therefore 15 x^{\circ}=180^{\circ} \quad \therefore x^{\circ}=12^{\circ}$
Since $\angle \mathrm{B}=\angle \mathrm{D}, 3 y^{\circ}=4 x^{\circ}=4 \times 12^{\circ}=48^{\circ}$
$\therefore y^{\circ}=\frac{48^{\circ}}{3}=16^{\circ}$
Since $\angle A=\angle C, 6 z^{\circ}=11 x^{\circ}=11 \times 12^{\circ}=132^{\circ}$
$\therefore z^{\circ}=\frac{132^{\circ}}{6}=22^{\circ} \therefore y^{\circ}+z^{\circ}=16^{\circ}+22^{\circ}=38^{\circ}$
Ans) 38
18. In quadrilateral DEFG,
if $\angle \mathrm{DEF}=a^{\circ}$ and $\mathrm{EFG}=b^{\circ}$,
$a^{\circ}+b^{\circ}+124^{\circ}+96^{\circ}=360^{\circ}$
$(\leftarrow$ Sum of the interior angles in quadrilateral)
$\therefore a^{\circ}+b^{\circ}+220^{\circ}=360^{\circ}$

$\therefore a^{\circ}+b^{\circ}=360^{\circ}-220^{\circ}=140^{\circ} \ldots \ldots$. (1)
Since $a^{\circ}+x^{\circ}=180$ and $b^{\circ}+y^{\circ}=180^{\circ}$
$(\leftarrow$ Straight angles).
$\therefore a^{\circ}+b^{\circ}+x^{\circ}+y^{\circ}=360^{\circ}$...... (2)
(1) \rightarrow (2); $140^{\circ}+x^{\circ}+y^{\circ}=360^{\circ}$
$\therefore x^{\circ}+y^{\circ}=360^{\circ}-140^{\circ}=220^{\circ}$
Ans 220
19. (1) In regular pentagon AGFED,

$$
\begin{aligned}
& \angle \mathrm{F}=\left[(5-2) \times 180^{\circ}\right] \div 5=\frac{3 \times 18 Q^{\circ} 36}{5} \\
& \quad=3 \times 36=108^{\circ}
\end{aligned} \begin{aligned}
& \text { Since } \overline{\mathrm{BC}} \| \overline{\mathrm{EF}}, \\
& \angle \mathrm{GCB}=\angle \mathrm{F}=108^{\circ} \\
& (\leftarrow \text { Corresponding angles }) \\
& x^{\circ}=108^{\circ}-60^{\circ}=48^{\circ}
\end{aligned}
$$

(2)

In the figure, since triangle ABP is equilateral, $\angle \mathrm{ABP}=60^{\circ}$ In regular octagon ABCDEFGH ,

$$
\begin{aligned}
\angle \mathrm{B} & =\left[(8-2) \times 180^{\circ}\right] \div 8=\frac{6^{3} \times 180^{\circ} 45}{8^{4}} \\
& =3 \times 45^{\circ}=135^{\circ}
\end{aligned}
$$

$\therefore \angle \mathrm{PBC}=\angle \mathrm{B}-\angle \mathrm{ABP}=135^{\circ}-60^{\circ}=75^{\circ}$
Since $B P=B C, \triangle B C P$ is an isosceles
triangle, $\angle \mathrm{BCP}=\frac{1}{2}\left(180^{\circ}-75^{\circ}\right)$
$=\frac{1}{2} \times 105^{\circ}=52.5^{\circ}$
Ans)
(1) 48 (2) 52.5°
20.

In the figure,
$\angle \mathrm{EFC}=\angle \mathrm{GFE}=25^{\circ}(\leftarrow$ Symmetric angles $)$
Since $\angle \mathrm{C}=\angle \mathrm{A}=110^{\circ}$, in triangle FEC,
$\angle \mathrm{FEC}=180^{\circ}-\left(25^{\circ}+110^{\circ}\right)=45^{\circ}$
Since $\angle \mathrm{C}^{\prime} \mathrm{EF}=\angle \mathrm{CEF}=45^{\circ}(\leftarrow$ Symmetric angles $)$,
$\angle \mathrm{HEB}=180^{\circ}-2 \times 45^{\circ}=180^{\circ}-90^{\circ}=90^{\circ}$
$(\leftarrow$ Straight angle)
Since $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}, \angle \mathrm{B}=180^{\circ}-110^{\circ}=70^{\circ}$
$(\leftarrow$ Co-interior angles)
In triangle $\mathrm{HBE}, \angle \mathrm{BHE}=180^{\circ}-\left(90^{\circ}+70^{\circ}\right)$
$=180^{\circ}-160^{\circ}=20^{\circ}$
$\therefore \angle \mathrm{C}^{\prime} \mathrm{HG}=\angle \mathrm{BHE}=20^{\circ}(\leftarrow$ Vertical angles $)$
Ans 20°
21. If an interior angle in a polygon has an integer degree, its exterior angle has an integer degree too. Since the sum of the exterior angles in any sided polygon is 360° and the positive factors of 360 are $1,2,3,4$, $\cdots \cdots, 180$ and 360 , each exterior angle of a
regular polygon could be $1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}, \ldots \ldots$. , $120^{\circ}\left(\leftarrow\right.$ Except 180° and 360°).
Since the number of positive factors of 360 is $(3+1)(2+1)(1+1)=4 \times 3 \times 2=24$ $\left[\leftarrow 360=2^{3} \cdot 3^{2} \cdot 5\right]$, the number of possible exterior angles of regular polygons is $24-2$ $=22$.
$\therefore 22$ regular polygons have integer degrees as their interior angles.

Ans 22
22. (1) In triangle $\mathrm{ABC}, \angle \mathrm{B}=180^{\circ}-\left(20^{\circ}+30^{\circ}\right)$ $=180^{\circ}-50^{\circ}=130^{\circ}$
In pentagon $\mathrm{BEGHD}, \mathrm{A}<20^{\circ}$ $130^{\circ}+x^{\circ}+110^{\circ}+90+100^{\circ}$ $=(5-2) \times 180^{\circ}$

$\therefore 430^{\circ}+x^{\circ}=3 \times 180^{\circ}=540$
$\therefore x^{\circ}=540^{\circ}-430^{\circ}=110^{\circ}$
(2) In triangle CGB, $\angle \mathrm{GBA}=c^{\circ}+g^{\circ}$
In pentagon ABDEF, $a^{\circ}+\left[\left(c^{\circ}+g^{\circ}\right)+b^{\circ}\right]+d^{\circ}+e^{\circ}+f^{\circ}$

is the sum of all interior angles.

$$
\begin{aligned}
& \therefore a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}+e^{\circ}+f^{\circ}+g^{\circ}=(5-2) \times 180^{\circ} \\
& =3 \times 180^{\circ}=540^{\circ}
\end{aligned}
$$

23.

Since $\overleftrightarrow{F A} \| \overleftrightarrow{\mathrm{DG}}, \angle \mathrm{AHD}=\angle \mathrm{FAH}=3 x^{\circ}$
(\leftarrow Alternate angles)
In regular pentagon $\mathrm{ABCDE}, \angle \mathrm{AED}=\angle \mathrm{EDC}$
$=\left[(5-2) \times 180^{\circ}\right] \div 5=\frac{3 \times 18 Q^{\circ} 36^{\circ}}{5}=3 \times 36^{\circ}$
$=108^{\circ}$
$\therefore \angle \mathrm{HED}=180^{\circ}-108^{\circ}=72^{\circ}$
$(\leftarrow$ Straight angles)
In triangle EDH, $\angle \mathrm{EDG}=3 x^{\circ}+72^{\circ}$
$\therefore 108^{\circ}+x^{\circ}=3 x^{\circ}+72^{\circ}$
$\therefore 8 x^{\circ}=108^{\circ}-72^{\circ}=36^{\circ} \quad \therefore x^{\circ}=18^{\circ}$
24.

In the figure, the sum of interior angles of two triangles ADF and BEG is $2 \times 180^{\circ}=360^{\circ}$ In triangle BDI, $\angle \mathrm{BIA}=b^{\circ}+d^{\circ}$
In triangle IAH, $\angle \mathrm{IHC}=a^{\circ}+\left(b^{\circ}+d^{\circ}\right)$
In triangle HCE, $\left(a^{\circ}+b^{\circ}+d^{\circ}\right)+e^{\circ}+c^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}+\angle \mathrm{G}$ is the sum of interior angles of the three triangles $\mathrm{ADF}, \mathrm{BEG}$ and $\mathrm{HCE}=3 \times 180^{\circ}=540^{\circ}$

$6 \star$ § perimeter of polygons pattern drill

(1) The perimeter of pentagon ABCDE is
$A B+B C+C D+D E+E A$
$=3+4+5+2+4=18$
Ans) (C)
(2) In the figure, $\mathrm{CD}+\mathrm{EF}=\mathrm{AB}$ and $\mathrm{BC}+\mathrm{DE}=\mathrm{AF}$
\therefore The perimeter of the polygon is
$A B+B C+C D+D E+E F+A F$
$=A B+(B C+D E)+(C D+E F)+A F$
$=\mathrm{AB}+\mathrm{AF}+\mathrm{AB}+\mathrm{AF}=2(\mathrm{AB}+\mathrm{AF})$
$=2(3+4)=2 \times 7=14$

Ans) (B)
(3) Since the sum of lengths of 9 sides is 54 , the average(arithmetic mean) of the lengths of 9 sides is $54 \div 9=6$

Ans (B)
(2) (1) Since the 3 sides of an equivalent triangle are the same, each side is
$2 \frac{1}{2}$ feet $\div 3=\frac{5}{2}$ feet $\div 3=\frac{5}{6}$ feet
$=\frac{5}{6} \times 12^{2}$ inches $=10$ inches
Ans) (A)

