

esson)

PASSPORT TO ADVANCED MATH

Zeros & Factors of Polynomials

M ost Valuable P oints

MVP 1 Zeros and factors

For polynomial p(x)if α is a real number and $p(\alpha) = 0 \Rightarrow$

- -(1) α is a zero of the polynomial p(x)
- (2) $(x-\alpha)$ is a factor of the polynomial p(x)
- (3) α is a *x*-intercept of the function y = p(x)
- (4) $x = \alpha$ is a solution(root) of the equation p(x) = 0

MVP ? Function interpretations

- (1) The point (a, b) lies on the graph of $y = f(x) \Rightarrow b = f(a)$
- (2) The intersection point (a, b) of two graphs of y = f(x) and y = g(x)
 - $\Rightarrow x = a$ is the solution of $f(x) = g(x) \Rightarrow |f(a)| = g(a) = b$

$oldsymbol{M}$ ost $oldsymbol{V}$ aluable $oldsymbol{P}$ roblems

For which of the following graphs of *h* is h(x) = -|h(x)| for all values of x shown?

A)

555 **>**

B)

C)

D)

Idea! From h(x) = -|h(x)|,

$$h(x)+|h(x)|=0$$
 $\therefore h(x)\leq 0$

- \therefore The graph y = h(x) lies under the x-axis.
- : The graph of B) satisfies the relation of h(x) = -|h(x)|

No calculator | ★★☆

Lesson

The function f is defined by $f(x)=x^3+bx^2+cx+d$. If the graph of f crosses the x-axis at -2, -1 and 3, then what is the value of c?

- A) -3
- B) -6
- C) -7
- D) -9

557

In the graph of y=f(x) above, which of the following represents all values of x for which $f(x) \le 1$?

- A) $x \le 3$
- B) $-3 \le x \le -1, x \ge 4$
- C) $x \le -3, -1 \le x \le 4$
- D) All real values of x

559 **>**

How many different zeros does the function y = f(x) have?

- A) One
- B) Two
- C) Three
- D) Four

A B C D

★★☆

A B C D

558

Which of the following could define f(x)?

- A) f(x) = 2x(x+2)(x-1)
- B) $f(x) = (x-2)^2(x+1)$
- C) $f(x) = 2(x-2)(x+1)^2$
- D) $f(x) = 2(x+2)(x-1)^2$

560

For a polynomial p(x), the value of p(5) is 2. Which of the following must be true about p(x)?

- A) x-7 is a factor of p(x).
- B) p(x-2) is divisible by x-5.
- C) x-5 is a factor of p(x)-2.
- D) The remainder when p(x) is divided by x+5 is 2.

A B C D

A B C D

561

Which of the following is a factor of the polynomial of p(x) above?

 $p(x) = 2x^4 - 3x^3 + x - 4$

- A) x+1
- B) x-1
- C) x-2
- D) 2x+1

563

If $f(x) = 3x^2 + 2x - 1$, at what x-coordinate do the graphs of y = f(x) - 1 and y = f(x-1)intersect?

- A) 0

- D) 1

A B C D

A B C D

562 **S**

The figure above shows the graphs of a quadratic function h whose maximum value is h(2). If h(k) = 0, which of the following could be the value of k?

- A) 0
- B) 1
- C) 4
- D) 5

If one zero of the function of

- A) 1
- B) 2
- C) 3
- D) 4

A B C D

A B C D

565 **NVP**

In the graph of y = g(x) above, how many zeros exist in the function of g(x)-1?

- A) None
- B) One
- C) Two
- D) Infinitely many

567

If x+2 is a factor of the polynomial $x^3+(k+3)x^2+3(x+1)-2k$, then what is the value of k?

- A) $\frac{1}{2}$
- B) $-\frac{1}{2}$
- C) $\frac{3}{2}$
- D) $-\frac{3}{2}$

A B C D

A B C D

566 **S**

If the function $f(x) = -x^4 + bx^3 + cx^2 + dx + e$ has two distinct positive zeros, which of the following could represent the complete graph of f in the xy-plane?

568 **S**

The figure above shows the graph of y = h(x), where h is a function. How many distinct positive integer values of c satisfy the equation h(c) = h(2c)?

- A) None
- B) One
- C) Two
- D) Three

A B C D

A B C D

569

The graphs of the functions f and g are lines as shown above.

For which values of x does $f(x) \le 2g(x)$?

- A) $0 \le x \le 1$
- B) $0 \le x \le 2$
- C) $2 \le x \le 4$
- D) $3 \le x \le 4$

571 >

How many distinct zeros does the graph of $f(x) = x^4 - 2x^3 + 2x - 1$ have?

- A) One
- B) Two
- C) Three
- D) Four

A B C D

(

A B C D

570 **>**

The graph of y = g(x) is shown above. If g(1) = k, which of the following values of x such that g(x) > g(k)?

- A) $0 \le x < 0.5$
- B) 5 < x < 8
- C) 4.5 < x < 8.5
- D) $8 < x \le 10$

572 **AVP**

The polynomial function shown in the graph crosses the x-axis at x=-2, $x=-\frac{1}{2}$ and x=1. If the equation for this polynomial is written in the form $y = ax^3 + bx^2 + cx + d$, which of the following could be the equation?

- A) $y = -2x^3 x^2 + x + 2$
- B) $y = -2x^3 + x^2 x + 2$
- C) $y = -2x^3 + 3x^2 3x 2$
- D) $y = -2x^3 3x^2 + 3x + 2$

A B C D

A B C D

573 **NVP**

The shaded region in the figure above is bounded by the x-axis, the line x=4 and the graph of y=f(x).

If the point (a, b) lies in the shaded region, which of the following must be true?

I.
$$a \leq 4$$

II.
$$b \le a$$

$$\coprod$$
 $b \le f(a)$

- A) I only
- B) II only
- C) I and II only
- D) I, II and III

A B C D

574 **AVP**

The figure above shows the graph of y = f(x) for all values of x. If the equation f(x) = k has distinct four solutions, what is the sum of all integer values of k?

- A) -1
- B) -2
- C) 1
- D) 2

575 >

$$g(x)=6x^3-x^2-x$$

 $h(x)=3x^2+x$

The polynomials g(x) and h(x) are defined above. Which of the following polynomials is divisible by 2x+1?

- A) g(x)
- B) h(x)
- C) g(x)+2h(x)
- D) g(x)-2h(x)

A B C D

576

The cost in dollars, c, of producing a custom-made T-shirt with a team logo is given by the formula $c=110+\frac{x}{2}$, where x is the number of T-shirts produced. When every T-shirt produced is sold, the revenue from selling the customized T-shirts is given by $R=15x-\frac{x^2}{10}$.

Which one of the following would be the formula for the profit from producing and selling x T-shirts?

A)
$$-\frac{x^2}{10} + \frac{29}{2}x - 110$$

B)
$$-\frac{x^2}{10} + \frac{31}{2}x - 110$$

C)
$$\frac{x^2}{10} - \frac{29}{2}x + 110$$

D)
$$\frac{x^2}{10} - \frac{31}{2}x - 110$$

A B C D

A B C D

577 **NVP**

What is the x-intercept of the graph of $f(x) = x^3 - 5x^2 + 2x - 10$?

The figure above shows the graph of

y = g(x). If the function h is defined

values of x such that h(2x) = g(4)?

h(x) = g(2x) - 1, what is the sum of all

The functions f and g graphed above are defined for $-2 \le x \le 3$.

What is the sum of all values of x that satisfy the equation f(x)-2g(x)=0?

29

578 **NVP**

y=g(x)

The graph above shows the function g, where g(x) = a(x+1)(x-2)(x-5) for some constant a. If g(k+3.2) = 0 and k > 0, then what is the values of k?

Most **V**aluable **P** rocesses

551 From
$$f(x) = x^2 - x + 2 = \left(x - \frac{1}{2}\right)^2 + \frac{7}{4}$$

 \therefore The vertex point of y = f(x) is $\left(\frac{1}{2}, \frac{7}{4}\right)$ From g(x) = f(x+3),

y = f(x) Translate left 3 units $y = \rho(x)$

Since the range of y=g(x) is unchanged, $g(x) \ge \frac{7}{4}$ (\leftarrow The least possible value)

Ans. $\frac{7}{4} (=1.75)$

Ans
$$\frac{7}{4} (=1.75)$$

- **552** From the circle $x^2 + y^2 + 2y 3 = 0$, $x^{2} + (y^{2} + 2y + 1) - 4 = 0$: $x^{2} + (y+1)^{2} = 2^{2}$
 - \therefore The center of the circle is (0, -1) and the radius is 2.

If the center (0, -1) is translated 1 unit up, the new center is (0, 0).

If the radius of 2 is increased by 50%, the new radius is $2\left(1 + \frac{50}{100}\right) = 2 \cdot \frac{3}{2} = 3$

: The equation of the resulting circle is $x^2 + y^2 = 3^2$

From
$$x^2 + y^2 + ax + by = c$$
,
 $a = 0$, $b = 0$ and $c = 3^2 = 9$
 $\therefore a + b + c = 0 + 0 + 9 = 9$

553
$$y = x^2$$
 Reflect the x -axis $-y = x^2$ $\therefore y = x^2$

 $\frac{1 \text{ unit left, 5 units up}}{} y-5 = -(x+1)^2$

$$\therefore y = -(x+1)^2 + 5 = -x^2 - 2x + 4$$

From $\begin{cases} y = x^2 \\ y = -x^2 - 2x + 4, \end{cases}$

$$x^2 = -x^2 - 2x + 4 \quad \therefore \ 2x^2 + 2x - 4 = 0$$

$$\therefore x^2 + x - 2 = 0 \quad \therefore (x+2)(x-1) = 0$$

- $\therefore x = -2, 1$
- : The intersection points of the two parabolas are P(-2, 4) and Q(1, 1)
- : The distance of two points of intersection P and Q is

$$d = \sqrt{(1 - (-2))^2 + (1 - 4)^2} = \sqrt{3^2 + (-3)^2}$$
$$= \sqrt{18} = 3\sqrt{2}, \quad \therefore d^2 = 18$$

554 From f(x) = f(x+5), y = f(x) is a periodic function with a period of 5. In the graph, y = f(x) has four different roots $(x = \frac{1}{3}, \frac{3}{2}, \frac{7}{3}, \frac{7}{2})$ where $0 \le x \le 5$. $\therefore (3 \times 4 + 3 =) 15 \text{ } x\text{-values satisfy } f(x) = 0$ where $0 \le x \le 18$. Ans 15

PASSPORT TO ADVANCED MATH

556 Since the function f(x) crosses the x-axis at -2, -1 and 3, f(x) has x+2, x+1 and x-3 as its factors.

$$f(x) = (x+2)(x+1)(x-3)$$

$$= (x^2+3x+2)(x-3) = x^3-7x-6$$

$$= x^3+bx^2+cx+d$$

$$\therefore b = 0, c = -7 \text{ and } d = -6$$

- **557** From $f(x) \le 1$, y = f(x) is below the graph of y=1. In the graph, $f(x) \le 1$ when $-3 \le x \le -1$ and $x \ge 4$. Ans B)
- **558** Since the function f(x) has x-intercepts at -2 and 1, f has x+2 and x-1 as its factors. Since f(x) has y-intercept at 4, f(0) = 4 $f(x) = 2(x+2)(x-1)^2 = 2x^3 + \cdots + 4$ could be the function. Ans D)
- **559** From $f(x) = (-2x-2)(x^2+x)$. $f(x) = -2(x+1) \cdot x(x+1) = -2x(x+1)^2$ $\therefore y = f(x)$ has two different zeros such as x=0, -1. (\leftarrow Two zeros) Ans B)
- **560** Since p(5) = 2, the remainder when p(x)is divided by x-5 is 2. $\therefore x-5$ is a factor of p(x)-2. Ans (C)

(

□ □ (46~85) copy.indd 59 23/05/2019 11:45 AM

- **561** From $p(x) = 2x^4 3x^3 + x 4$, $p(-1)=2(-1)^4-3(-1)^3+(-1)-4$ =2+3-1-4=0
 - $\therefore p(x)$ has a factor of x+1.
- **562** Since h(2) is the maximum value in the graph, the axis of symmetry is x=2. Since h(1) = h(3) > 2, h(0)=h(4)=2, h(-1)=h(5) could be the value of zero.

Ans D)

- **563** From $f(x) = 3x^2 + 2x 1$, $f(x)-1=3x^2+2x-2$ and $f(x-1) = 3(x-1)^2 + 2(x-1) - 1$ $=3(x^2-2x+1)+2x-2-1=3x^2-4x$
 - From $3x^2 + 2x 2 = 3x^2 4x$, 6x = 2 $\therefore x = \frac{1}{3}$
 - \therefore The *x*-coordinate of the intersection point of two graphs is $\frac{1}{3}$.
- **564** Since one zero of the function

$$f(x) = x^3 - 6x^2 + 3x + 10$$
 is 5,

f(x) has a factor of x-5.

$$f(x) = (x-5)(x^2-x-2)$$
$$= (x-5)(x-2)(x+1)$$

- $\therefore x = 5, 2 \text{ and } -1$
- : The difference of the other two zeros is (2-(-1)=) 3. Ans ()
- **565** In the graph, g(x)-1=0 where $x = -\frac{3}{2}$ and $0 \le x \le 1$
 - \therefore The function of y = g(x) 1 has infinitely many zeros.

566 Since the coefficient of the 4th degree term is negative, the graph is finally downward.

Since the function has two distinct positive zeros, the graph intersects the x-axis at two points as shown below.

Ans ()

567 Since x+2 is a factor of the polynomial $x^3+(k+3)x^2+3(x+1)-2k$,

x = -2 is a solution of the equation.

$$\therefore (-2)^3 + (k+3)(-2)^2 + 3(-2+1) - 2k = 0$$

$$\therefore -8+4(k+3)-3-2k=0$$

$$\therefore -8+4k+12-3-2k=0 \quad \therefore 2k=-1$$

$$\therefore k = -\frac{1}{2}$$

Ans B)

568 In the graph of y = h(x),

i)
$$f(2) = f(4) = 0$$
 where $c = 2$

ii)
$$f(4) = f(8) = 0$$
 where $c = 4$

From i) and ii), c = 2 and 4

 $[\leftarrow$ Two values of c] Ans ()

569 In the graph, $f(x) \leq 2g(x)$ where $0 \le x \le 2$.

570 In the graph,

- where g(5) = 6 $\therefore g(x) > 6$ where 5 < x < 8

g(1) = 5 $\therefore k = 5$

Most **V**aluable **P** rocesses

571 From
$$f(x) = x^4 - 2x^3 + 2x - 1$$
,

$$f(x) = (x^4 - 1) - 2x(x^2 - 1)$$

$$= (x^2 - 1)(x^2 + 1) - 2x(x^2 - 1)$$

$$= (x^2 - 1)(x^2 - 2x + 1)$$

$$= (x - 1)(x + 1)(x - 1)^2 = (x - 1)^3(x + 1)$$

f(x) has distinct two zeros such as 1 and -1. Ans B)

572 Since the x-intercepts of the graph is x = -2, $x = -\frac{1}{2}$ and x = 1, the equation has factors of x+2, 2x+1 and x-1. If $x \to \infty$, then $y = -\infty$: a < 0y = -(x+2)(2x+1)(x-1) $=-(2x^2+5x+2)(x-1)$ $=-(2x^3+3x^2-3x-2)$

 $\therefore y = -2x^3 - 3x^2 + 3x + 2$ Ans D)

573

In the graph, the given statements I, II and III must be true. Ans D)

574

In the graph, y=f(x) and y=k have different four intersection points, k = -2 and k = 1

 \therefore The sum of all values of k is (-2+1=)-1.Ans A)

575
$$g(x) = 6x^3 - x^2 - x = x(6x^2 - x - 1)$$

= $x(3x+1)(2x-1)$ ①
 $h(x) = 3x^2 + x = x(3x+1)$ ②

From ① and ②, g(x) = h(x)(2x-1)

$$\therefore g(x) + 2h(x) = h(x)(2x-1) + 2h(x)$$

$$= h(x)(2x-1+2) = (2x+1)h(x)$$

$$g(x)-2h(x) = (2x-1)h(x)-2h(x)$$
$$= h(x)(2x-1-2) = (2x-3)h(x)$$

g(x)+2h(x) is divisible by 2x+1.

Ans (C)

576 Since the Profit is $\lceil (Revenue) - (Cost) \rfloor$, $p(x) = 15x - \frac{x^2}{10} - \left(110 + \frac{x}{2}\right)$ $=-\frac{x^2}{10}+\frac{29}{2}x-110$ Ans A)

577 Since the *x*-intercept of f(x) is the value of x such that f(x) = 0, $x^3 - 5x^2 + 2x - 10 = 0$

> Since the possible rational roots of the equation are $x = \pm (1, 2, 5, 10)$, if x = 5, $5^3 - 5 \cdot 5^2 + 2 \cdot 5 - 10 = 125 - 125 + 10 - 10 = 0$

 $\therefore x = 5$

Ans 5

578

In the graph, g(4) = 2

From h(2x) = g(4), h(2x) = 2

Since $h(2x) = g(2 \cdot 2x) - 1 = g(4x) - 1$,

g(4x)-1=2 : g(4x)=3

In the graph, 4x = -2, $\frac{1}{2}$ and 5

 $\therefore x = -\frac{1}{2}, \frac{1}{8} \text{ and } \frac{5}{4}$

 \therefore The sum of all values of x is

$$\left(-\frac{1}{2} + \frac{1}{8} + \frac{5}{4} = \right) \frac{7}{8}$$
 Ans $\frac{7}{8} (=0.875)$

Lesson **2**9

\boldsymbol{x}	f(x)	g(x)	f(x)-2g(x)
-2	1	-2	1-2(-2)=5
-1	0	0	$0-2\cdot 0=0$
0	-1	1	$(-1)-2\cdot 1=-3$
1	-2	-1	-2-2(-1)=0
2	0	-2	0-2(-2)=4
3	1	-1	1-2(-1)=3

On the table above, f(x)-2g(x)=0where x = -1 and 1

- \therefore The sum of all values of x such that
- f(x)-2g(x)=0 is (-1)+1=0

Ans 0

580 In the graph of g(x) = a(x+1)(x-2)(x-5), the x-intercepts are x = -1, 2 and 5.

$$g(-1) = g(2) = g(5) = 0$$

From g(k+3.2) = 0, k+3.2 = -1, 2 and 5

k = -4.2, -1.2 and 1.8

Since k>0, k=1.8

Ans $1.8 \left(= \frac{9}{5} \right)$

PASSPORT TO ADVANCED MATH

582 From the equation $\sqrt{x+8} + \sqrt{x-8} = 8$,

$$(\sqrt{x+8} + \sqrt{x-8})^2 = 8^2$$

$$\therefore x + 8 + 2\sqrt{(x+8)(x-8)} + x - 8 = 64$$

$$\therefore 2x + 2\sqrt{x^2 - 64} = 64 \quad \therefore \sqrt{x^2 - 64} = 32 - x$$

$$\therefore x^2 - 64 = ((32 - x)^2) = 1024 - 64x + x^2$$

$$\therefore 64x = (1024 + 64 =)1088 \quad \therefore x = 17$$

$$\therefore \sqrt{5x-4} = \sqrt{5\cdot 17-4} = \sqrt{85-4} = 9$$

Ans A)

583 From the equation $\frac{64}{x-8} + 7 = 11$,

$$\frac{64^{16}}{x-8} = 4$$
 $\therefore \frac{16}{x-8} = 1$ $\therefore x-8 = 16$

$$\therefore r=24$$

$$\therefore \frac{64}{x+8} + 7 = \frac{64}{24+8} + 7 = \frac{64}{32} + 7 = 2 + 7 = 9$$

Ans D)

584 From the equation $\frac{1}{v} - \frac{1}{v+1} = \frac{1}{v+3}$,

$$\frac{y+1-y}{y(y+1)} = \frac{1}{y+3}$$
 $\therefore \frac{1}{y(y+1)} = \frac{1}{y+3}$

$$\therefore y^2 + y = y + 3 \quad \therefore y^2 = 3 \quad \therefore y = \pm \sqrt{3}$$

Since y > 0, $y = \sqrt{3}$

Ans B)

585 From $\frac{2d^2-d-10}{d^2+7d+10} = \frac{d^2-4d+3}{d^2+2d-15}$

$$\frac{(2d-5)(d+2)}{(d+2)(d+5)} = \frac{(d-1)(d-3)}{(d+5)(d-3)}$$

$$\therefore \frac{2d-5}{d+5} = \frac{d-1}{d+5} \quad \therefore 2d-5 = d-1 \quad \therefore d=4$$

586 From $\frac{2x+1}{2x-5} - \frac{2x+3}{2x-7} = 0$, $\frac{2x+1}{2x-5} = \frac{2x+3}{2x-7}$

$$\therefore (2x+1)(2x-7)=(2x+3)(2x-5)$$

$$\therefore 4x^2 - 12x - 7 = 4x^2 - 4x - 15 \quad \therefore 8x = 8$$

$$\therefore x=1$$

587 From $\frac{x}{2x-1} - \frac{2}{4x^2-1} = \frac{3}{2x+1}$,

$$\frac{x}{2x-1} - \frac{2}{(2x+1)(2x-1)} = \frac{3}{2x+1}.$$

$$\therefore x(2x+1)-2=3(2x-1)$$

$$\therefore 2x^2 + x - 2 = 6x - 3$$
 $\therefore 2x^2 - 5x + 1 = 0$

Since $x \neq \pm \frac{1}{2}$, the sum of two values of x

is
$$(-\frac{-5}{2} =)\frac{5}{2}$$
.

588 From $\frac{2}{x+1} - \frac{x}{3} = 1$, $\frac{2 \cdot 3 - x(x+1)}{3(x+1)} = 1$

$$\therefore 6 - x^2 - x = 3x + 3 \quad \therefore x^2 + 4x - 3 = 0$$

$$\therefore x = -2 \pm \sqrt{2^2 - 1 \cdot (-3)} = -2 \pm \sqrt{7}$$

$$\therefore x_1 + x_2 = (-2 + \sqrt{7}) + (-2 - \sqrt{7}) = -4$$

$$\left[\leftarrow \frac{-4}{1} = -4\right]$$

589 From $\frac{1}{x-3} \le 1$, $(x-3)^2 \cdot \frac{1}{x-3} \le 1 \cdot (x-3)^2$

$$(x-3) \le (x-3)^2 (x \ne 3)$$

$$(x-3)^2 - (x-3) \ge 0$$

$$(x-3)(x-3-1) \ge 0$$
 $(x-3)(x-4) \ge 0$

