Lesar PASSPORT TO ADVANCED MATH
 29 Zeros \&e Factors of Polynomials -Trequency (\%)- 020106080 - 100
 Most Valuable P oints

MVP 1 Zeros and factors

For polynomial $p(x)$ if α is a real number and $p(\alpha)=0 \Rightarrow$

$$
\left[\begin{array}{l}
\text { (1) } \alpha \text { is a zero of the polynomial } p(x) \\
\text { (2) }(x-\alpha) \text { is a factor of the polynomial } p(x) \\
\text { (3) } \alpha \text { is a } x \text {-intercept of the function } y=p(x) \\
\text { (4) } x=\alpha \text { is a solution(root) of the equation } p(x)=0
\end{array}\right.
$$

MVP 2 Function interpretations

(1) The point (a, b) lies on the graph of $y=f(x) \Rightarrow b=f(a)$
(2) The intersection point (a, b) of two graphs of $y=f(x)$ and $y=g(x)$ $\Rightarrow x=a$ is the solution of $f(x)=g(x) \Rightarrow f(a)=g(a)=b$

In the $x y$-plane, the graph of function $f(x)$
y-intercept at 4 .
Which of the following could define $f(x)$?
A) $f(x)=2 x(x+2)(x-1)$
B) $f(x)=(x-2)^{2}(x+1)$
C) $f(x)=2(x-2)(x+1)^{2}$
D) $f(x)=2(x+2)(x-1)^{2}$

ABC

559
 $$
f(x)=(-2 x-2)\left(x^{2}+x\right)
$$

How many different zeros does the function $y=f(x)$ have?
A) One
B) Two
C) Three
D) Four

A) $\frac{1}{2}$
B) $-\frac{1}{2}$
C) $\frac{3}{2}$
D) $-\frac{3}{2}$

```
567
567
567
If \(x+2\) is a factor of the polynomial
If \(x+2\) is a factor of the polynomial
\(x^{3}+(k+3) x^{2}+3(x+1)-2 k\), then what is the
\(x^{3}+(k+3) x^{2}+3(x+1)-2 k\), then what is the
value of \(k\) ?
value of \(k\) ?
C) Two
D) Infinitely many



(
B) -2
C) 1
D) 2
\[
g(x)=6 x^{3}-x^{2}-x
\]
\[
h(x)=3 x^{2}+x
\]

The polynomials \(\mathrm{g}(x)\) and \(\mathrm{h}(x)\) are defined above. Which of the following polynomials is divisible by \(2 x+1\) ?
A) \(g(x)\)
B) \(h(x)\)
C) \(g(x)+2 h(x)\)
D) \(g(x)-2 h(x)\)
```



```
575
```

```
575
```

$\frac{M V P}{576}>$
The cost in dollars, c, of producing a
custom-made T-shirt with a team logo is given by the formula $c=110+\frac{x}{2}$, where x is the number of T -shirts produced.
When every T-shirt produced is sold, the revenue from selling the customized T-shirtsi is given by $R=15 x-\frac{x^{2}}{10}$
Which one of the following would be the formula for the profit from producing and selling x T-shirts?
A) $-\frac{x^{2}}{10}+\frac{29}{2} x-110$
B) $-\frac{x^{2}}{10}+\frac{31}{2} x-110$
C) $\frac{x^{2}}{10}-\frac{29}{2} x+110$
D) $\frac{x^{2}}{10}-\frac{31}{2} x-110$

Âobobo

551 From $f(x)=x^{2}-x+2=\left(x-\frac{1}{2}\right)^{2}+\frac{7}{4}$ \therefore The vertex point of $y=f(x)$ is $\left(\frac{1}{2}, \frac{7}{4}\right)$ From $g(x)=f(x+3)$, $y=f(x) \xrightarrow{\text { Translate left } 3 \text { units }} y=g(x)$

Since the range of $y=g(x)$ is unchanged, $g(x) \geq \frac{7}{4}$ (\leftarrow The least possible value) Ans $\frac{7}{4}(=1.75)$
552 From the circle $x^{2}+y^{2}+2 y-3=0$, $x^{2}+\left(y^{2}+2 y+1\right)-4=0 \quad \therefore x^{2}+(y+1)^{2}=2^{2}$ \therefore The center of the circle is $(0,-1)$ and the radius is 2 .
If the center $(0,-1)$ is translated 1 unit up, the new center is $(0,0)$.
If the radius of 2 is increased by 50%, the new radius is $2\left(1+\frac{50}{100}\right)=2 \cdot \frac{3}{2}=3$
\therefore The equation of the resulting circle is

$$
x^{2}+y^{2}=3^{2}
$$

From $x^{2}+y^{2}+a x+b y=c$,
$a=0, b=0$ and $c=3^{2}=9$
$\therefore a+b+c=0+0+9=9$
Ans) 9
$553 y=x^{2} \xrightarrow{\text { Reflect the } x \text {-axis }}-y=x^{2} \quad \therefore y=x^{2}$
$\xrightarrow{1 \text { unit left, } 5 \text { units up }} y-5=-(x+1)^{2}$
$\therefore y=-(x+1)^{2}+5=-x^{2}-2 x+4$
From $\left\{\begin{array}{l}y=x^{2} \\ y=-x^{2}-2 x+4,\end{array}\right.$
$x^{2}=-x^{2}-2 x+4 \quad \therefore 2 x^{2}+2 x-4=0$
$\therefore x^{2}+x-2=0 \quad \therefore(x+2)(x-1)=0$
$\therefore x=-2,1$
\therefore The intersection points of the two parabolas are $\mathrm{P}(-2,4)$ and $\mathrm{Q}(1,1)$
\therefore The distance of two points of intersection P and Q is

$$
\begin{aligned}
d & =\sqrt{(1-(-2))^{2}+(1-4)^{2}}=\sqrt{3^{2}+(-3)^{2}} \\
& =\sqrt{18}=3 \sqrt{2} . \quad \therefore d^{2}=18 \quad \quad \text { Ans }
\end{aligned}
$$

554 From $f(x)=f(x+5), y=f(x)$ is a periodic function with a period of 5 . In the graph, $y=f(x)$ has four different roots ($x=\frac{1}{3}, \frac{3}{2}, \frac{7}{3}, \frac{7}{2}$) where $0 \leq x \leq 5$.
$\therefore(3 \times 4+3=) 15 x$-values satisfy $f(x)=0$ where $0 \leq x \leq 18$.

Ans) 15

Zessor

 PASSPORT TO ADVANCED MATHZeros \&e Factors of Polynomials
556 Since the function $f(x)$ crosses the x-axis at $-2,-1$ and $3, f(x)$ has $x+2$, $x+1$ and $x-3$ as its factors.

$$
\begin{aligned}
\therefore f(x) & =(x+2)(x+1)(x-3) \\
& =\left(x^{2}+3 x+2\right)(x-3)=x^{3}-7 x-6 \\
& =x^{3}+b x^{2}+c x+d
\end{aligned}
$$

$\therefore b=0, c=-7$ and $d=-6$
Ans C)

557 From $f(x) \leq 1, y=f(x)$ is below the graph of $y=1$.
In the graph, $f(x) \leq 1$ when $-3 \leq x \leq-1$ and $x \geq 4$.

Ans B)

558 Since the function $f(x)$ has x-intercepts at -2 and $1, f$ has $x+2$ and $x-1$ as its factors.
Since $f(x)$ has y-intercept at $4, f(0)=4$
$\therefore f(x)=2(x+2)(x-1)^{2}\left[=2 x^{3}+\cdots \cdots+4\right]$ could be the function.

Ans D)

559 From $f(x)=(-2 x-2)\left(x^{2}+x\right)$,
$f(x)=-2(x+1) \cdot x(x+1)=-2 x(x+1)^{2}$
$\therefore y=f(x)$ has two different zeros such as $x=0,-1$. (\leftarrow Two zeros) Ans B)

560 Since $p(5)=2$, the remainder when $p(x)$ is divided by $x-5$ is 2 .
$\therefore x-5$ is a factor of $p(x)-2$.
Ans C) .

561 From $p(x)=2 x^{4}-3 x^{3}+x-4$,
$p(-1)=2(-1)^{4}-3(-1)^{3}+(-1)-4$

$$
=2+3-1-4=0
$$

$\therefore p(x)$ has a factor of $x+1$.
Ans A)

562 Since $h(2)$ is the maximum value in the graph, the axis of symmetry is $x=2$.
Since $h(1)=h(3)>2$, $h(0)=h(4)=2$, $h(-1)=h(5)$ could be the value of zero.

Ans D)

563 From $f(x)=3 x^{2}+2 x-1$,
$f(x)-1=3 x^{2}+2 x-2$
and $f(x-1)=3(x-1)^{2}+2(x-1)-1$
$=3\left(x^{2}-2 x+1\right)+2 x-2-1=3 x^{2}-4 x$
From $3 x^{2}+2 x-2=3 x^{2}-4 x, 6 x=2$
$\therefore x=\frac{1}{3}$
\therefore The x-coordinate of the intersection point of two graphs is $\frac{1}{3}$. Ans C)

564 Since one zero of the function
$f(x)=x^{3}-6 x^{2}+3 x+10$ is 5 ,
$f(x)$ has a factor of $x-5$.
$\therefore f(x)=(x-5)\left(x^{2}-x-2\right)$

$$
=(x-5)(x-2)(x+1)
$$

$\therefore x=5,2$ and -1
\therefore The difference of the other two zeros
is $(2-(-1)=) 3$.
Ans C)

565 In the graph,
$g(x)-1=0$ where $x=-\frac{3}{2}$ and $0 \leq x \leq 1$

\therefore The function of $y=g(x)-1$ has infinitely many zeros.

Ans D)

566 Since the coefficient of the 4 th degree term is negative, the graph is finally downward.
Since the function has two distinct positive zeros, the graph intersects the x-axis at two points as shown below.
C)

Ans
C)

567 Since $x+2$ is a factor of the polynomial $x^{3}+(k+3) x^{2}+3(x+1)-2 k$, $x=-2$ is a solution of the equation.
$\therefore(-2)^{3}+(k+3)(-2)^{2}+3(-2+1)-2 k=0$
$\therefore-8+4(k+3)-3-2 k=0$
$\therefore-8+4 k+12-3-2 k=0 \quad \therefore 2 k=-1$
$\therefore k=-\frac{1}{2}$
Ans B)

568 In the graph of $y=h(x)$,
i) $f(2)=f(4)=0$ where $c=2$
ii) $f(4)=f(8)=0$ where $c=4$

From i) and ii), $c=2$ and 4
[\leftarrow Two values of c]
Ans C)

569 In the graph, $f(x) \leq 2 g(x)$ where $0 \leq x \leq 2$.

570 In the graph, $g(1)=5 \quad \therefore k=5$ From $g(x)>g(5)$, where $g(5)=6$
$\therefore g(x)>6$ where $5<x<8$

571 From $f(x)=x^{4}-2 x^{3}+2 x-1$,

$$
\begin{aligned}
f(x) & =\left(x^{4}-1\right)-2 x\left(x^{2}-1\right) \\
& =\left(x^{2}-1\right)\left(x^{2}+1\right)-2 x\left(x^{2}-1\right) \\
& =\left(x^{2}-1\right)\left(x^{2}-2 x+1\right) \\
& =(x-1)(x+1)(x-1)^{2}=(x-1)^{3}(x+1)
\end{aligned}
$$

$\therefore f(x)$ has distinct two zeros such as 1 and -1 .

Ans B)
572 Since the x-intercepts of the graph is $x=-2, x=-\frac{1}{2}$ and $x=1$, the equation has factors of $x+2,2 x+1$ and $x-1$.
If $x \rightarrow \infty$, then $y=-\infty \quad \therefore a<0$
$\therefore y=-(x+2)(2 x+1)(x-1)$
$=-\left(2 x^{2}+5 x+2\right)(x-1)$
$=-\left(2 x^{3}+3 x^{2}-3 x-2\right)$
$\therefore y=-2 x^{3}-3 x^{2}+3 x+2$
Ans D)

573

In the graph, the given statements I, II and III must be true.

Ans D)

574

In the graph, $y=f(x)$ and $y=k$ have different four intersection points, $k=-2$ and $k=1$
\therefore The sum of all values of k is $(-2+1=)$ -1 .

Ans A)
$575 g(x)=6 x^{3}-x^{2}-x=x\left(6 x^{2}-x-1\right)$

$$
\begin{equation*}
=x(3 x+1)(2 x-1) \tag{1}
\end{equation*}
$$

$h(x)=3 x^{2}+x=x(3 x+1) \ldots \ldots$ (2)
From (1) and (2), $g(x)=h(x)(2 x-1)$
$\therefore g(x)+2 h(x)=h(x)(2 x-1)+2 h(x)$ $=h(x)(2 x-1+2)=(2 x+1) h(x)$
$\therefore g(x)-2 h(x)=(2 x-1) h(x)-2 h(x)$ $=h(x)(2 x-1-2)=(2 x-3) h(x)$
$\therefore g(x)+2 h(x)$ is divisible by $2 x+1$.
Ans C)

576 Since the Profit is \lceil (Revenue) - (Cost) \rfloor,

$$
\begin{aligned}
p(x) & =15 x-\frac{x^{2}}{10}-\left(110+\frac{x}{2}\right) \\
& =-\frac{x^{2}}{10}+\frac{29}{2} x-110
\end{aligned}
$$

Ans A)

577 Since the x-intercept of $f(x)$ is the value of x such that $f(x)=0$,
$x^{3}-5 x^{2}+2 x-10=0$
Since the possible rational roots of the equation are $x= \pm(1,2,5,10)$, if $x=5$, $5^{3}-5 \cdot 5^{2}+2 \cdot 5-10=125-125+10-10=0$ $\therefore x=5$

578

In the graph, $g(4)=2$
From $h(2 x)=g(4), h(2 x)=2$
Since $h(2 x)=g(2 \cdot 2 x)-1=g(4 x)-1$,
$g(4 x)-1=2 \quad \therefore g(4 x)=3$
In the graph, $4 x=-2, \frac{1}{2}$ and 5
$\therefore x=-\frac{1}{2}, \frac{1}{8}$ and $\frac{5}{4}$
\therefore The sum of all values of x is

$$
\left(-\frac{1}{2}+\frac{1}{8}+\frac{5}{4}=\right) \frac{7}{8} \quad \text { Ans } \frac{7}{8}(=0.875)
$$

579 From the graphs of f and g,

x	$f(x)$	$g(x)$	$f(x)-2 g(x)$
-2	1	-2	$1-2(-2)=5$
-1	0	0	$0-2 \cdot 0=0$
0	-1	1	$(-1)-2 \cdot 1=-3$
1	-2	-1	$-2-2(-1)=0$
2	0	-2	$0-2(-2)=4$
3	1	-1	$1-2(-1)=3$

On the table above, $f(x)-2 g(x)=0$ where $x=-1$ and 1
\therefore The sum of all values of x such that

$$
f(x)-2 g(x)=0 \text { is }(-1)+1=0
$$

Ans) 0
580 In the graph of $g(x)=a(x+1)(x-2)(x-5)$, the x-intercepts are $x=-1,2$ and 5 .
$\therefore g(-1)=g(2)=g(5)=0$
From $g(k+3.2)=0, k+3.2=-1,2$ and 5
$\therefore k=-4.2,-1.2$ and 1.8
Since $k>0, k=1.8$
Ans $1.8\left(=\frac{9}{5}\right)$

PASSPORT TO ADVANCED MATH

Ratiomal / Radical Equations
582 From the equation $\sqrt{x+8}+\sqrt{x-8}=8$,
$(\sqrt{x+8}+\sqrt{x-8})^{2}=8^{2}$
$\therefore x+8+2 \sqrt{(x+8)(x-8)}+x-8=64$
$\therefore 2 x+2 \sqrt{x^{2}-64}=64 \quad \therefore \sqrt{x^{2}-64}=32-x$
$\therefore x^{2}-64=\left((32-x)^{2}=\right) 1024-64 x+\grave{x}^{2}$
$\therefore 64 x=(1024+64=) 1088 \quad \therefore x=17$
$\therefore \sqrt{5 x-4}=\sqrt{5 \cdot 17-4}=\sqrt{85-4}=9$
Ans A)

583 From the equation $\frac{64}{x-8}+7=11$,
$\frac{64^{16}}{x-8}=4 \quad \therefore \frac{16}{x-8}=1 \quad \therefore x-8=16$
$\therefore x=24$
$\therefore \frac{64}{x+8}+7=\frac{64}{24+8}+7=\frac{64}{32}+7=2+7=9$
Ans D)

584 From the equation $\frac{1}{y}-\frac{1}{y+1}=\frac{1}{y+3}$, $\frac{y+1-y}{y(y+1)}=\frac{1}{y+3} \quad \therefore \frac{1}{y(y+1)}=\frac{1}{y+3}$ $\therefore y^{2}+y=y+3 \quad \therefore y^{2}=3 \quad \therefore y= \pm \sqrt{3}$ Since $y>0, y=\sqrt{3}$

Ans B)

585 From $\frac{2 d^{2}-d-10}{d^{2}+7 d+10}=\frac{d^{2}-4 d+3}{d^{2}+2 d-15}$,
$\frac{(2 d-5)(d+2)}{(d+2)(d+5)}=\frac{(d-1)(d-3)}{(d+5)(d-3)}$
$\therefore \frac{2 d-5}{d+5}=\frac{d-1}{d+5} \quad \therefore 2 d-5=d-1 \quad \therefore d=4$
Ans B)

586 From $\frac{2 x+1}{2 x-5}-\frac{2 x+3}{2 x-7}=0, \quad \frac{2 x+1}{2 x-5}=\frac{2 x+3}{2 x-7}$ $\therefore(2 x+1)(2 x-7)=(2 x+3)(2 x-5)$
$\therefore 4 x^{2}-12 x-7=4 x^{2}-4 x-15 \quad \therefore 8 x=8$
$\therefore x=1$
Ans D)

587 From $\frac{x}{2 x-1}-\frac{2}{4 x^{2}-1}=\frac{3}{2 x+1}$,
$\frac{x}{2 x-1}-\frac{2}{(2 x+1)(2 x-1)}=\frac{3}{2 x+1}$.
$\therefore x(2 x+1)-2=3(2 x-1)$
$\therefore 2 x^{2}+x-2=6 x-3 \quad \therefore 2 x^{2}-5 x+1=0$
Since $x \neq \pm \frac{1}{2}$, the sum of two values of x is $\left(-\frac{-5}{2}=\right) \frac{5}{2}$.

Ans D)

588 From $\frac{2}{x+1}-\frac{x}{3}=1, \quad \frac{2 \cdot 3-x(x+1)}{3(x+1)}=1$
$\therefore 6-x^{2}-x=3 x+3 \quad \therefore x^{2}+4 x-3=0$
$\therefore x=-2 \pm \sqrt{2^{2}-1 \cdot(-3)}=-2 \pm \sqrt{7}$
$\therefore x_{1}+x_{2}=(-2+\sqrt{7})+(-2-\sqrt{7})=-4$

$$
\left[\leftarrow \frac{-4}{1}=-4\right]
$$

Ans D)

589 From $\frac{1}{x-3} \leq 1, \quad(x-3)^{2} \cdot \frac{1}{x-3} \leq 1 \cdot(x-3)^{2}$
$\therefore(x-3) \leq(x-3)^{2}(x \neq 3)$
$\therefore(x-3)^{2}-(x-3) \geq 0$
$\therefore(x-3)(x-3-1) \geq 0 \quad \therefore(x-3)(x-4) \geq 0$

