OVERVIEW

Stepper Motor HAT is designed for Raspberry Pi, can drive two stepper motors and support up to 1/32 microstepping.

FEATURES

- Onboard dual DRV8825 motor controller IC with built-in microstepping indexer, drives two stepper motors, easy to use
- 6 available microstepping modes, configured with the DIP switches: full-step, half-step, 1/4-step, 1/8-step, 1/16-step, and 1/32-step
- Adjustable motor drive current via potentiometer, maximum 2.5A current output
- Protection features: Overcurrent Protection (OCP), Thermal Shutdown (TSD), VM Undervoltage Lockout (UVLO)
- Integrates 5V regulator, allows providing power to Raspberry Pi
- Onboard multi connector options for stepper motors in different specifications
- Comes with development resources and manual (examples in BCM2835, wiringPi, and python)
SPECIFICATIONS

- Motor controller: DRV8825
- Motor drive voltage: 8.2V~28V
- Motor drive current: 2.5A
- Logic voltage: 3.3V
- Dimension: 65mm × 56mm
- Mounting hole size: 3.0mm
CONTENT

Overview .. 1

Features ... 1

Specifications .. 2

Hardware ... 5

Pinout .. 5

Power .. 7

Motor Driver ... 7

Control protocol ... 10

H-bridge ... 10

protocol of motor ... 11

Microstepping .. 12

DRV8825 ... 12

Demo codes ... 13

Preparation ... 13

Downloading ... 13

Libraries Installation .. 13

Setting ... 15

Microstepping ... 15

Current setting .. 16

Running demo code ... 18

BCM2835 ... 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiringPi</td>
<td>18</td>
</tr>
<tr>
<td>Python</td>
<td>18</td>
</tr>
<tr>
<td>Code Analysis</td>
<td>19</td>
</tr>
<tr>
<td>BCM2835</td>
<td>19</td>
</tr>
<tr>
<td>files</td>
<td>19</td>
</tr>
<tr>
<td>Codes</td>
<td>20</td>
</tr>
<tr>
<td>wiringPi</td>
<td>22</td>
</tr>
<tr>
<td>Files</td>
<td>22</td>
</tr>
<tr>
<td>Python</td>
<td>22</td>
</tr>
<tr>
<td>Files</td>
<td>22</td>
</tr>
<tr>
<td>Codes</td>
<td>22</td>
</tr>
<tr>
<td>FAQ</td>
<td>24</td>
</tr>
</tbody>
</table>
HARDWARE

PINOUT

<table>
<thead>
<tr>
<th>PIN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>8.2~28V Power Input</td>
</tr>
<tr>
<td>5V</td>
<td>5V Power</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>A1</td>
<td>Output 1 of bipolar stepper motor M1 winding A</td>
</tr>
<tr>
<td>Pin</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>A2</td>
<td>Output 2 of bipolar stepper motor M1 winding A</td>
</tr>
<tr>
<td>B1</td>
<td>Output 1 of bipolar stepper motor M1 winding B</td>
</tr>
<tr>
<td>B2</td>
<td>Output 2 of bipolar stepper motor M1 winding B</td>
</tr>
<tr>
<td>A3</td>
<td>Output 3 of bipolar stepper motor M2 winding A</td>
</tr>
<tr>
<td>A4</td>
<td>Output 4 of bipolar stepper motor M2 winding A</td>
</tr>
<tr>
<td>B3</td>
<td>Output 3 of bipolar stepper motor M2 winding B</td>
</tr>
<tr>
<td>B4</td>
<td>Output 4 of bipolar stepper motor M2 winding B</td>
</tr>
</tbody>
</table>

A1、A2、B1、B2: Control pins of stepper motor M1;

A3、A4、B3、B4: Control pins of stepper motor M2;

Power switch: Control power supply for Raspberry Pi;

Switch D0-D5: Control subdivision format;

D0-D2: Control stepper motor 1;

D3-D5: Control stepper motor 2;

Potentiometers: Control output current
MP1584 regular supports wide 4.5V to 28V input, and up to 2A current output. Even thought that MP1584 support low to 4.5V input, however, VM also supply power for motor controller, which require at least 8.2V. So, the recommend input voltage is 8.2~28v.
The DRV8825 is a two H-bridge and a microstepping indexer, and is intended to drive a bipolar stepper motor. It supports up to 1/32 microstepping. Internal shutdown functions are provided for overcurrent, short circuit, under voltage lockout and over temperature.

VM: Voltage input, range: 8.2V~45V, consider of regular, the actual input range is: 8.2V~28V

nSLEEP: Should keep High, otherwise chip will enter sleep mode, and module cannot work properly.

nENBL: Enable pin. Low: H-bridge is enabled and rise edge of STEP is sampled; High: H-bridge is disabled, output is high impedance. **Note that you should disable it if you don’t use it, otherwise the chip and motor will keep heating!**

STEP: Step clock input

DIR: Direction control

MODE0, MODE1, MODE2: Microstepping input

PIN 12/PIN 13: Adjust output current

R13/R16: Sample resistors, they are 0.2Ω

According to datasheet Page11:

\[\text{Ichop} = \frac{V(xREF)}{5 \times R(ISENSE)} \]

and resistor is 0.2Ω, then we can get that output current is proportional to voltage of potentiometer.

\[I = V\text{ref} \]
So, if you need to increase the output current, you can adjust potentiometers on board.

8.3.2 Current Regulation

The current through the motor windings is regulated by a fixed-frequency PWM current regulation, or current chopping. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. Once the current hits the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle.

In stepping motors, current regulation is used to vary the current in the two windings in a semi-sinusoidal fashion to provide smooth motion.

The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor connected to the xSEN pins, multiplied by a factor of 5, with a reference voltage. The reference voltage is input from the xVREF pins.

The full-scale (100%) chopping current is calculated in Equation 1.

\[
I_{\text{chop}} = \frac{V_{\text{vref}}}{5 \times R_{\text{sense}}}
\]

Example:

If a 0.25-O sense resistor is used and the VREFx pin is 2.5 V, the full-scale (100%) chopping current will be

\[2.5 \text{ V} / (5 \times 0.25 \text{ O}) = 2 \text{ A}\]

The reference voltage is scaled by an internal DAC that allows fractional stepping of a bipolar stepper motor, as described in the microstepping indexer section below.
H-bridge is a popular motor control circuit. It is named because it looks like character “H”. It consists of four transistors/MOSFET, motor is connected on the center, you should through two transistors in diagonal line to drive motor.

When Q1 and Q4 is accessed, current flow from positive pole -> Q1 to Q4 -> negative pole, then motor moves forward.

When Q2 and Q4 is accessed, current flow from positive pole -> Q2 to Q4 -> negative pole, then motor moves backward.

If it is two H-bridge, there will be two set of output lines, for example, stepper motor has four wires which is two H-bridge.
According to Amperé's circuital law, when current of coil A flow from left to right, stator generates magnetic field, internal side is North pole which will adopt rotator of motor. When the currents of four coils based on certain rule, they will generate a rotate magnetic field and drive the rotator rotate. If every motor has four rotators, it has four statuses:

Status 1: coil A left in right out(current), coil C right in left out, motor rotate 0 degree;
Status 2: coil B top in bottom out, coil D bottom in top out, motor rotate 90 degree against status 1.
Status 3: coil A right in left out, coil C left in right out, motor rotate 90 degree against status 2;
Status 4: coil B bottom in top out, coil D top in left out, motor rotate 90 degree against status 3;

Motor turn from previous status to next status, we call it step. Motor rotate in a circle every four steps, and its step angle is 90 degree.

Most of motors have more than four stators. For example, 42 motor, 57 motors all have 50 stators with step angle 1.8 degree.
28BYJ-48 is four phase and eight steps, Speed Variation Ratio is 1/64 and its step angle is 5.625/64 degree.

MICROSTEPPING

We have said that motor rotate because of flowing current.

According to its working principle, we can control currents in coils to make them rise or fall regularly. It generates several stable intermediate-current statuses, related vector directions of resultant magnetic fields also have several intermediate statuses. To change the vector direction, motor can rotate in smaller angle and rotate more smoothly.

Microstepping is to divide each full step into smaller steps to help smooth out the motor’s rotation, especially at slow speeds. For example, if microstepping the motor we described above to 1/2, status 1 should be done with two steps.

DRV8825

DRV88250 control stepper motor rotating according to pulses given by MCU.

How many pulses do motors require to rotate a circle without microstepping?

42 motor: \(360 / 1.8 = 200 \)

28BYJ-48 motor: \(360 / \frac{5.625}{64} \times 64 = 4096 \)

As we test, with 200 pulses, 42 motor can rotate a circle. However, with 4096 pulses, 28BYJ-48 rotate two circles. That is because 28BYJ-48 is four-phase motor require 2048 pulses for a circle actually.
DOWNLOADING

Visit Waveshare Wiki and search for “Stepper Motor HAT”, open and download demo code from wiki.

Extract and copy to your Raspberry Pi.

LIBRARIES INSTALLATION

1. Install wiringPi

 1.1 Open Terminal (Ctrl+T), clone wiringPi

   ```bash
   git clone git://git.drogon.net/wiringPi
   ```
1.2 Install it

```
cd wiringPi
./build
```

2 Install BCM2835

2.1 Download the latest bcm2835 library

```
http://www.airspayce.com/mikem/bcm2835/index.html
```

2.2 Copy the zip you download to Raspberry Pi without extracting

2.3 Open Terminal, extract and install

```
#下载最新的函数库 bcm2835-1.xx.tar.gz
tar zxvf /boot/bcm2835-1.xx.tar.gz
cd bcm2835-1.xx
./configure
make
sudo make check
sudo make install
```

3 Install python library

```
sudo apt-get install python-rpi.gpio
```
MOTOR

Stepper motor HAT support up to 1/32 microstepping. Support both software and
hardware configuring.

Software configuring

In the demo codes, you can configure the microstepping by SOFTWARE/softward
which you can refer to [Code Analysis](#).

Hardware configuring

To use hardware configuration, you need to modify the function

```c
Drv8825_SetMicroStep(HARDWARE, "")
```

in sample codes, then set the DIP switches (D0~D5).

D0, D1, D2 are used to control motor M1 (MODE0, MODE1, MODE2), D3, D4, D5 are
used to control motor M2 (MODE0, MODE1, MODE2). Their relationship are as below:
For more details, please refer to datasheet page13

【Note】Sample codes uses full step setting, for which all switches are set to 0 by default.

CURRENT SETTING

The maximum output current of DRV8856 is 2.5A, you can adjust current by adjusting the potentiometer

Generally, working current of stepper motor is less than 2.5A, in this case, we need to adjust the current outputted.
For more details about the current required, please refer to datasheet page 12.

The R_{isense} on board is 200mR, so we can get that $I_{\text{chop}} = V_{\text{xref}}$. V_{xref} is voltage of potentiometer, I_{chop} is output current. Reduce voltage by clockwise and anticlockwise to increase the voltage.

The factory setting is compatible with most of stepper motor. However, there are some motor whose minimum phase current is much larger, in this case, we need to adjust the potentiometer for properly working.

【Note】

Chip may be damaged if motor works in abnormal states for long time.

Do not turn the potentiometer anticlockwise to maximum, otherwise, the chip will be damaged after long time using.
RUNNING DEMO CODE

BCM2835

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd bcm2835</td>
</tr>
<tr>
<td><code>sudo ./motor</code></td>
</tr>
</tbody>
</table>

WIRINGPI

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd wiringpi</td>
</tr>
<tr>
<td><code>sudo ./motor</code></td>
</tr>
</tbody>
</table>

PYTHON

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd python</td>
</tr>
<tr>
<td><code>sudo python test.py</code></td>
</tr>
</tbody>
</table>
CODE ANALYSIS

We provide Raspberry Pi demo codes on wiki.

BCM2835

FILES

- /bin:
 .o files which are generated by makefile

- Makefile: Code compilation

- motor: Executable file, you can execute command sudo ./motor to run the code

- Obj/:
 folders to save function files
 Debug.h: Debug header file, you can set USE_DEBUG to 1 to print debug information;
 Deconflict(h): Define pins and interface of Raspberry Pi.
 DRV8825.c(h): Driver code of DRV8825
 main.c: Main function
 README.txt: Description
CODES

1. Initializing BCM2835 and setting pins

   ```
   if(DEV_ModuleInit())
   exit(0);
   ```

2. Choose Motor

   ```
   DRV8825_SelectMotor(MOTOR1);
   #Parameter: choose motor; MOTOR1, MOTOR2
   ```

3. Setting Microstepping

   ```
   DRV8825_SetMicroStep(HARDWARE, "fullstep");
   
   #Parameter 1: set control type; HARDWARE, SOFTWARE
   
   #Parameter 2: set microstepping; "fullstep", "halfstep", "1/4step", "1/8step", "1/16step", "1/32step"
   ```

4. Steps

   ```
   DRV8825_TurnStep(BACKWARD, 200, 2);
   
   #Parameter 1: control direction; FORWARD, BACKWARD
   
   #Parameter 2: steps
   
   #Parameter 2: delay for every step (ms)
   ```

5. Stop rotating

   ```
   DRV8825_Stop();
   ```

6. Exception Handling

   ```
   signal(SIGINT, Handler);
   ```
If you use CTRL+C to stop the code, DRV8825 chip may doesn’t be disabled, so this function is used to handle such case. Ctrl+C generates signal SIGINT, Handler() function is executed when the signal generated.

The Handler() work with these statements:

```c
DRV8825_SelectMotor(MOTOR1);
DRV8825_Stop();
DRV8825_SelectMotor(MOTOR2);
DRV8825_Stop();
```
WIRINGPI

```bash
pi@raspberry pi:~/code/module/Stepper_Motor_HAT_code/wiringpi $ tree

bin
  DEV_Config.o
  DRV8825.o
  main.o
Makefile
  motor
  obj
    Debug.h
    DEV_Config.c
    DEV_Config.h
    DRV8825.c
    DRV8825.h
    main.c
  README.txt
```

FILES

Similar to BCM2835, differences are:

DEV_Config.c(h): Library called is different

Makefile: linking library is different

PYTHON

FILES

```bash
pi@raspberry pi:~/code/module/Stepper_Motor_HAT_code/python $ ls
DRV8825.py  test.py
```

DRV8825.py is driver code of DRV8825, which is used to control stepper motor.

test.py: test code

CODES

test.py:

1. Instantiate DRV8825 library
Motor1 = DRV8825(dir_pin=13, step_pin=19, enable_pin=12, mode_pins=(16, 17, 20))

2. Set microstepping

Motor1.SetMicroStep('software','fullstep')

#Parameter 1: control type, ‘software’, ‘hardware’

3. steps

Motor1.TurnStep(Dir='forward', steps=200, stepdelay = 0.005)

#Parameter 1: control direction, ‘forward’, ‘backward’

#Parameter 2: steps

#Parameter 3: delay (ms)

4. Stop

Motor1.Stop()

#Must be used to disable chip
1. Why the motor and chips on modules get serious hot?

 Energy efficiency of stepper motor is very low, has only 20%~30% useful work, others become heat. So, stepper motor will get very hot after running for long time. **Do not touch!!!**

 By the way, check if you use function DRV8825_Stop() to disable chip.

2. Can this module be used to drive 42 or 57 motors?

 The module could be used to drive motors whose working current is less than 1.5A without heat sink. Normally, it supports up to 2.5A.

3. Why doesn’t motor work and only shake left and right?

 Motor shake when lack-phase, try to connect motor with Dupont lines if both interfaces of module cannot work properly.

4. Why do motor desynchronize?

 The phase current is based on torsion of stepper motor. You can adjust the blue potentiometer if motor desynchronize.

5. Why do motor sound “si si” when stopping?

 It is normal.

6. How to switch control type?

 You can change the setting on codes, “Hardware” or “Software”.

 It default use hardware control. If you want to change to software control, you need to weld resistors on the backside of PCB and turn all switches to 1.