

Version: 3.0

TECHNICAL SPECIFICATION

MODEL NO: ED029TC1

The content of this information is subject to be changed without notice. Please contact E Ink or its agent for further information.

Customer's Confirmation

Customer

Date

By

E Ink's Confirmation

Approve By	Sean Cher
Confirmed By	Freemen Unung
Prepared By	Joe Li

Revision History

Rev.	Issued Date	Revised Contents
1.0	April 14, 2016	New
2.0	June 3, 2016	Add border dimension in the drawing
3.0	Oct. 12, 2016	Revise FPC pin sequence in the drawing at page 5 Revise connector type at page 6

TECHNICAL SPECIFICATION

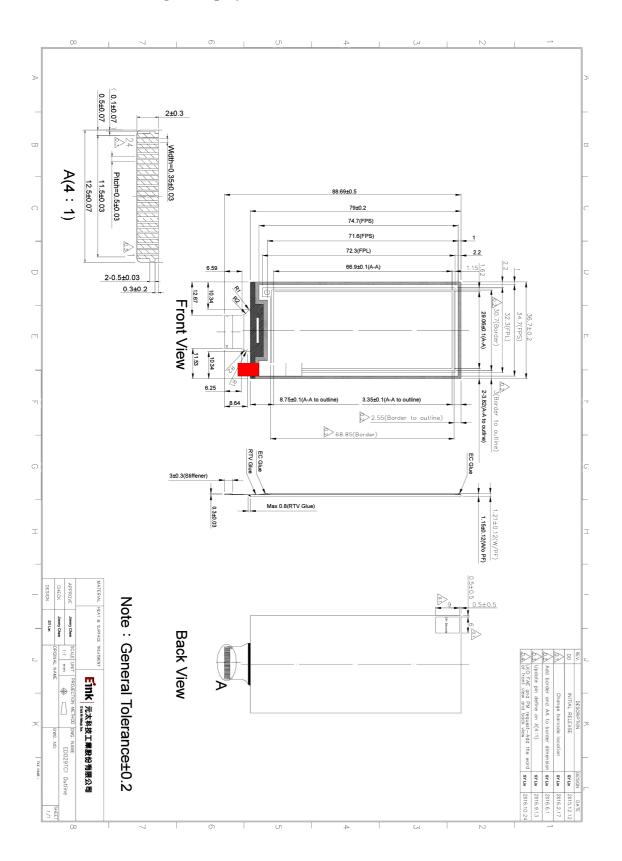
<u>CONTENTS</u>

<i>NO</i> .	ITEM	PAGE							
-	Cover	1							
-	Revision History	2							
-	Contents	3							
1	General Description	4							
2	Features	4							
3	Mechanical Specifications								
4	Mechanical Drawing of Display Module	5							
5	Input/Output Terminals	6							
6	Command Table	8							
7	Display Module Electrical Characteristics	27							
8	Optical Characteristics	34							
9	Handling, Safety and Environment Requirements	36							
10	Reliability test	38							
11	Packing	39							
12	Block Diagram	40							

1. General Description

ED029TC1 is a reflective electrophoretic E Ink[®] technology display module based on active matrix TFT substrate. It has 2.9" active area with 296×128 pixels, the display is capable to display images at 1-bit white and black full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM, and border are supplied with each panel.

- 2. Features
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- ➢ Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current deep sleep mode
- On chip display RAM
- Waveform stored in On-chip OTP
- > Serial peripheral interface available
- On-chip oscillator
- > On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I2C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 280um


Parameter	Specifications	Unit	Remark
Screen Size	2.9	Inch	
Display Resolution	296(H)×128(V)	Pixel	Dpi: 112
Active Area	66.9(H)×29.06(V)	mm	
Pixel Pitch	0.227×0.226	mm	
Pixel Configuration	Square		
Outline Dimension	79.0(H)×36.7(V) ×1.15(D)	mm	without masking film
Weight	4±0.5	ъ	

3. Mechanical Specifications

4. Mechanical Drawing of Display Module

E Ink Holdings

Eink 元太科技

1nk 元太 E Ink Holdings

5. Input/Output Interface

5-1) Connector type: AYF532435

Pin Assignment

Pin As	signment		
Pin #	Туре	Single	Description
1		NC	No connection and do not connect with other NC pins
2	0	GDR	N-Channel MOSFET Gate Drive Control
3	0	RESE	Current Sense Input for the Control Loop
4		NC	No connection and do not connect with other NC pins
5	Р	VDHR	Positive source driver voltage for Red (+2.4V ~ +11V)
6	0	TSCL	I2C Interface to digital temperature sensor Clock pin
7	I/O	TSDA	I2C Interface to digital temperature sensor Date pin
8	I	BS	Bus selection pin; L: 4-wire IF. H: 3-wire IF. (Default)
9	0	BUSY_N	Busy state output pin
10	I	RST_N	Reset
11	I	DC	Data /Command control pin
12	I	CSB	Chip Select input pin
13	0	SCL	serial clock pin (SPI)
14	I/O	SDA	serial data pin (SPI)
15	Р	VDD	Supply voltage
16	Р	VDD	Supply voltage
17	Р	GND	Ground
18	Р	VDDDO	Core logic power pin
19		NC	No connection and do not connect with other NC pins
20	Р	VSH	Positive Source driving voltage
21	Р	VGH	Positive Gate driving voltage
22	Р	VSL	Negative Source driving voltage
23	Р	VGL	Negative Gate driving voltage
24	Р	VCOM	VCOM driving voltage

ED029TC1

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active Low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is low, the operation of chip should not be interrupted and any commands

should not be issued to the module. The driver IC will put Busy pin low when the driver IC is working such as:

- Outputting display waveform; or
- Programming with OTP
- Communicating with digital temperature sensor

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

	Table. Bus interface selection
BS1	MPU Interface
L	4-lines serial peripheral interface (SPI)
Н	3-lines serial peripheral interface (SPI) – 9 bits SPI

Table: Bus interface selection

ED029TC1

6. Command Table

W/R:	0: Write cycle 1: Read cycle	C/D	: 0: Co	mman	d 1:	Data	Ι	07~D0): -: Do	on't ca	are	#: Valid Data	
#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	0	0	0	0	0	0	0		00h
1	Panel Setting (PSR)	0	1	#	#	#	#	#	#	#	#	RES[1:0],REG,KW/R,UD, SHL,SHD_N,RST_N	0Fh
		0	0	0	0	0	0	0	0	0	1		01h
		0	1	-	-	-	-	-	-	#	#	VDS_EN,VDG_EN	03h
2	Power Setting (PWR)	0	1	-	-	-	-	-	#	#	#	VCOM_HV,VGHL_LV[1:0]	00h
		0	1	-	-	#	#	#	#	#	#	VDH[5:0]	26h
		0	1	-	-	#	#	#	#	#	#	VDL[5:0]	26h
		0	1	-	-	#	#	#	#	#	#	VDHR[5:0]	03h
3	Power OFF(POF)	0	0	0	0	0	0	0	0	1	0		02h
	Power OFF Sequence	0	0	0	0	0	0	0	0	1	1		03h
4	Setting(PFS)	0	1	-	-	#	#	-	-	-	-	T_VDS_OF	00h
5	Power ON(PON)	0	0	0	0	0	0	0	1	0	0		04h
6	Power ON Measure(PMES)	0	0	0	0	0	0	0	1	0	1		05h
		0	0	0	0	0	0	0	1	1	0		06h
_		0	1	#	#	#	#	#	#	#	#	BT_PHA[7:0]	17h
7	Booster Soft Start(BTST)	0	1	#	#	#	#	#	#	#	#	BT_PHB[7:0]	17h
		0	1	-	-	#	#	#	#	#	#	BT_PHC[5:0]	17h
0	D GI	0	0	0	0	0	0	0	1	1	1		07h
8	Deep Sleep	0	1	1	0	1	0	0	1	0	1	Check code	A5h
		0	0	0	0	0	1	0	0	0	0	B/W Pixel Data (160×296)	10h
	Display Start Transmission	0	1	#	#	#	#	#	#	#	#	KPXL[1:8]	00h
9	1(DTM1, white/black Data)	0	1										
	(x-byte command)	0	1	#	#	#	#	#	#	#	#	KPXL[n-1:n]	00h
10	Deta Chan	0	0	0	0	0	1	0	0	0	1		11h
10	Data Stop	1	1	#	-	-	-	-	-	-	-		00h

ED029TC1

	E ink holdings			_		_							<u>129101</u>
#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
11	Display Refresh(DRF)	0	0	0	0	0	1	0	0	1	0		12h
		0	0	0	0	0	1	0	0	1	1	B/W Pixel Data	13h
	Display Start Transmission 2(DTM2,	-	Ŭ	Ŭ	•	•	-	Ŭ	Ŭ	-	-	(160×296)	
12	Red Data) (x-byte command)	0	1	#	#	#	#	#	#	#	#	RPXL[1:8]	00h
	Keu Data) (x-oyte command)	0	1										
		0	1	#	#	#	#	#	#	#	#	RPXL[n-1:n]	00h
	VCOM LUT(LUTC)												
13	(45-byte command, structure of bytes	0	0	0	0	1	0	0	0	0	0		20h
	2~7 repeated)												
	W2W LUT (LUTWW)												
	(43-byte command,						0						
14	structure of bytes 2~7 repeated 7	0	0	0	0	1	0	0	0	0	1		21h
	times)												
	B2W LUT (LUTBW / LUTR)												
	(43-byte command,												
15	structure of bytes 2~7 repeated 7	0	0	0	0	1	0	0	0	1	0		22h
	times)												
	W2B LUT (LUTWB / LUTW)												
	(43-byte command,												
16	structure of bytes 2~7 repeated 7	0	0	0	0	1	0	0	0	1	1		23h
	times)												
	B2B LUT (LUTBB / LUTB)												
	(43-byte command,												
17	sturcture of bytes $2 \sim 7$ repeated 7	0	0	0	0	1	0	0	1	0	0		24h
	times)												
		0	0	0	0	1	1	0	0	0	0		30h
18	PLL control(PLL)	0	1	-	-	#	#	#	#	#	#	M[2:0],N[2:0]	3Ch
		0	0	0	1	0	0	0	0	0	0		40h
	Temperature Sensor Calibration											LM[10:3]/TSR[7:0	
19	(TSC)	1	1	#	#	#	#	#	#	#	#]	00h
		1	1	#	#	#	-	-	-	-	-	LM[2:0]/-	00h
	Temperature Sensor Selection	0	0	0	1	0	0	0	0	0	1	L ·· J	41h
20	(TSE)	0	1	#	-	-	-	#	#	#	#	TSE,TO[3:0]	00h
		0	0	0	1	0	0	0	0	1	0		42h
		0	1	#	#	#	#	#	#	#	#	WATTR[7:0]	00h
21	Temperature Sensor Write(TSW)			#	#	#	#	#	#	#	#		00h
		0	1									WMSB[7:0]	
		0	1	#	#	#	#	#	#	#	#	WLSB[7:0]	00h

ED029TC1

		INK HOLD	aniga			1	1	1	1	1	1		<u>D0291C1</u>
#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
	Temperature	0	0	0	1	0	0	0	0	1	1		43h
22	Sensor Read	1	1	#	#	#	#	#	#	#	#	RMSB[7:0]	00h
	(TSR)	1	1	#	#	#	#	#	#	#	#	RLSB[7:0]	00h
	Vcom and data	0	0	0	1	0	1	0	0	0	0		50h
23	interval setting (CDI)	0	1	#	#	#	#	#	#	#	#	VBD[1:0],DDX[1:0],CDI[3:0]	D7h
	Lower Power	0	0	0	1	0	1	0	0	0	1		51h
24	Detection (LPD)	1	1	-	-	-	-	-	-	-	#	LPD	01h
	TCON setting	0	0	0	1	1	0	0	0	0	0		60h
25	(TCON)	0	1	#	#	#	#	#	#	#	#	S2G[3:0],G2S[3:0]	22h
		0	0	0	1	1	0	0	0	0	1		61h
	Resolution	0	1	#	#	#	#	#	0	0	0	HRES[7:3]	00h
26	setting (TRES)	0	1	-	-	-	-	-	-	-	#		00h
		0	1	#	#	#	#	#	#	#	#	VRES[8:0]	00h
		0	0	0	1	1	1	0	0	0	0		70h
27	Revision(REV)	0	1	#	#	#	#	#	#	#	#	LUT_REV[7:0]	00h
		0	0	0	1	1	1	0	0	0	1		71h
28	Get Status (FLG)	1	1	-	#	#	#	#	#	#	#	PTL_FLAG,I ² C_BUSY,DATA_ FLAG,PON,POF,BUSY	02h
	Auto	0	0	1	0	0	0	0	0	0	0		80h
29	Measurement Vcom	0	1	-	-	#	#	#	#	#	#	AMVT[1:0], XON,AMVS, AMV,AMVE	10h
	Read Vcom	0	0	1	0	0	0	0	0	0	1		81h
30	Value(VV)	1	1	-	-	#	#	#	#	#	#	VV[5:0]	00h
	VCM_DC	0	0	1	0	0	0	0	0	1	0		82h
31	Setting (VDCS)	0	1	-	-	#	#	#	#	#	#	VDCS[5:0]	00h
		0	0	1	0	0	1	0	0	0	0		90h
		0	1	#	#	#	#	#	0	0	0	HRST[7:3]	00h
		0	1	#	#	#	#	#	1	1	1	HRED[7:3]	07h
	Partial Window	0	1	-	-	-	-	-	-	-	#		00h
32	(PTL)	0	1	#	#	#	#	#	#	#	#	VRST[8:0]	00h
		0	1	-	-	-	-	-	-	-	#		00h
		0	1	#	#	#	#	#	#	#	#	VRED[8:0]	00h
		0	1	-	-	-	-	-	-	-	#	PT_SCAN	01h

	E Ink Holdings ED029TC													
#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default	
33	Partial In (PTIN)	0	0	1	0	0	1	0	0	0	1		91h	
34	Partial Out (PTOUT)	0	0	1	0	0	1	0	0	1	0		92h	
	Power Saving	0	0	1	1	1	0	0	0	1	1		E3h	
35	(PWS)	0	1	#	#	#	#	#	#	#	#	VCOM_W[3:0],SD_W[3:0]	00h	

(1) Panel Setting (PSR) (Register: R00H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0	0	0
Setting the	0	1	RES	RES	REG EN	BWR	UD	SHL	SHD N	RST N
panel	0	1	1	0	KEU_EN	BWK	UD	SHL	SHD_N	KSI_N

RES[1:0]: Display Resolution setting (source x gate)

	00b: 96x230 (Default)	Active source channels: S0 ~ S95. Active gate channels: G0 ~ G229.									
	01b: 96x252	Active source channels: S0 ~ S95. Active gate channels: G0 ~ G251.									
	10b: 128x296	Active source channels: S0 ~ S127. Active gate channels: G0 ~ G295.									
	11b: 160x296	Active source channels: S0 ~ S159. Active gate channels: G0 ~ G295.									
REG_EN:	LUT selection										
	0: LUT from OTP. (De	fault)									
	1: LUT from register.										
BWR:	Black / White / Red										
	0: Pixel with B/W/Red.	(Default)									
	1: Pixel with B/W.										
UD:	Gate Scan Direction										
	0: Scan down.	First line to last line: Gn-1 \rightarrow Gn-2 \rightarrow Gn-3 \rightarrow \rightarrow G0									
	1: Scan up. (default) 1	First line to last line: $G0 \rightarrow G1 \rightarrow G2 \rightarrow \rightarrow Gn-1$									
SHL:	Source Shift direction										
	0: Shift left	First data to last data: Sn-1 \rightarrow Sn-2 \rightarrow Sn-3 \rightarrow \rightarrow S0									
	1: Shift right. (default)	First data to last data: S0 \rightarrow S1 \rightarrow S2 \rightarrow \rightarrow Sn-1									
SHD_N:	Booster Switch										
	0: Booster OFF, registe	r data are kept, and SEG/BG/VCOM are kept 0V or floating.									
	1: Booster ON (Default)										
	When SHD_N becom	e LOW, charge pump will be turned OFF, register and SRAM data will keep until VDD OFF, and SD									
	output and VCOM wi	ill remain previous condition. SHD_N may have two conditions: 0v or floating.									
RST_N:	Soft Reset										
	1: No effect (Default)	. Booster OFF, Register data are set to their default values, and SEG/BG/VCOM: 0V									
	When RST_N becom	e LOW, the driver will be reset, all registers will be reset to their default value. All driver functions will									
	be disabled. SD outpu	be disabled. SD output and VCOM will base on previous condition. It may have two conditions: 0v or floating.									

(2) Power Setting (PWR) (R01H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	0	0	0	0	0	0	0	0	0	1		
	0	1	-	-	-	-	-	-	VDS_E N	VDG_EN		
Selecting Internal/External	0	1	-	-	-	-	-	VCOM_H V	VGHL_LV[1:0]			
Power	0	1	-	-	VDH[5:0]							
	0	1	-	-				VDL[5:0]				
	0	1	-	-	VDHR[5:0]							

VDS_EN: Source power selection

0: External source power from VDH/VDL pins

1: Internal DC/DC function for generating VDH/VDL

VDG_EN: Gate power selection

0: External gate power from VGH/VGL pins

1: Internal DC/DC function for generating VGH/VGL

VCOM_HV: VCOM Voltage Level

0: VCOMH=VDH+VCOMDC, VCOML=VHL+VCOMDC

1: VCOML=VGH, VCOML=VGL

VGHL_LV[1:0]: VGH / VGL Voltage Level selection.

VGHL_LV	VGHL voltage level
00(Default)	VGH=16V,VGL=-16V
01	VGH=15V,VGL= -15V
10	VGH=14V,VGL=-14V
11	VGH=13V,VGL=-13V

VDH[5:0]: Internal VDH power selection for B/W pixel.(Default value: 100110b)

VDH	VDH_V	VDH	VDH_V
000000	2.4V		
000001	2.6V	100110	10.0V
000010	2.8V	100111	10.2V
000011	3.0V	101000	10.4V
000100	3.2V	101001	10.6V
000101	3.4V	101010	10.8V
000110	3.6V	101011	11.0V
000111	3.8V	(others)	11.0V

VDL[5:0]:	Internal VDL power selection for B/W pixel. (Default value: 100110b)	

VDL	VDL_V	VDL	VDL_V
000000	-2.4V		
000001	-2.6V	100110	-10.0V
000010	-2.8V	100111	-10.2V
000011	-3.0V	101000	-10.4V
000100	-3.2V	101001	-10.6V
000101	-3.4V	101010	-10.8V
000110	-3.6V	101011	-11.0V
000110	-3.8V	(others)	-11.0V
000111	-3.0V	(outers)	-11.0V

VDHR[5:0]: Internal VDHR power selection for Red pixel. (Default value: 000011b)

VDHR	VDHR _V	VDHR	VDHR_V
000000	2.4V		
000001	2.6V	100110	10.0V
000010	2.8V	100111	10.2V
000011	3.0V	101000	10.4V
000100	3.2V	101001	10.6V
000101	3.4V	101010	10.8V
000110	3.6V	101011	11.0V
000111	3.8V	(others)	11.0V

(3) Power OFF (POF) (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning OFF the power	0	0	0	0	0	0	0	0	1	0

After the Power Off command, the driver will power off following the Power Off Sequence. This command will turn off charge pump, T-con, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD becomes OFF. Source Driver output and Vcom will remain as previous condition, which may have 2 condition: 0V or floating.

(4) Power off sequence setting (PFS) (R03H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Setting Power OFF sequence	0	0	0	0	0	0	0	0	1	1
	0	1	-	-	T_VDS_C	OFF[1:0]	-	-	-	-

T_VDS_OFF[1:0]: Power OFF Sequence of VDH and VDL.

00b: 1frame (Default)

01b: 2 frames

10b: 3frames

11b:4 frame

(5) Power ON (PON) (R04H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning ON the Power	0	0	0	0	0	0	0	1	0	0

After the Power ON command, the driver will be powered ON following the Power ON Sequence. Refer to the Power ON Sequence section.

In the sequence, temperature sensor will be activated for one time sensing before enabling booster.

Eink 元太科技

ED029TC1

D0 0

BT_PHA0

BT_PHB0

BT PHC0

(6) Power ON Measure (PMES) (R05H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1	0	1

			0 0	0 0	0	0	0 1	0 1		
This command (7) Booster S	enables th oft <u>Start (B</u>		al bandgap, w (R06H)	hich will be o	cleared by the	next POF.				
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	
	0	0	0	0	0	0	0	1	1	
Starting data	0	1	BT_PHA7	BT_PHA7 BT_PHA6		BT_PHA4	BT_PHA3	BT_PHA2	BT_PHA1	Ī
transmission	0	1	BT PHB7	BT PHB7 BT PHB6		BT PHB4	BT PHB3	BT PHB2	BT PHB1	I
	0	1			BT PHC5	BT PHC4	BT PHC3	BT PHC2	BT PHC1	Ī
BTPHA[7:6]:	Soft start	period	of phase A.							-
	00b: 10m		01b: 20mS	10b:	30mS	11b: 40mS				
BTPHA[5:3]:	Driving s	trength	of phase A							
	000b: stre	ength 1	001b: stro	ength 2	010b: streng	th 3 011	b: strength 4			
	100b: stre	ength 5	101b: str	ength 6	110b: strengt	h7 11	(strongest)			
BTPHA[2:0]:	Minimum	n OFF ti	me setting of	GDR in phas	e B					
	000b: 0.2	7uS	001b: 0.3	4uS	010b: 0.40uS	0111	b: 0.54uS			
	100b: 0.8	0uS	101b: 1.5	4uS	110b: 3.34uS 111b:		b: 6.58uS			
BTPHB[7:6]:	Soft start	period	of phase B.							
	00b: 10m	ıS	01b: 20mS	10b:	30mS	11b: 40mS				
BTPHB[5:3]:	Driving s	trength	of phase B							
	000b: stre	ength 1	001b: stre	ength 2	010b: streng	th 3 011	b: strength 4			
	100b: stre	ength 5	101b: stro	ength 6	110b: strengt	h7 11	1b: strength 8	(strongest)		
BTPHB[2:0]:	Minimum	n OFF ti	me setting of	GDR in phas	e B					
	000b: 0.2	7uS	001b: 0.3	4uS	010b: 0.40uS	0111	b: 0.54uS			
	100b: 0.8	0uS	101b: 1.5	4uS	110b: 3.34uS	111	b: 6.58uS			
BTPHC[5:3]:	Driving s	trength	of phase C							
	000b: stre	ength 1	001b: stre	ength 2	010b: streng	th 3 011	b: strength 4			
	100b: stre	ength 5	101b: stre	ength 6	110b: strengt	h 7 11	1b: strength 8	(strongest)		
BTPHC[2:0]:	Minimum	n OFF ti	me setting of	GDR in phas	e C					

(8) Deep Sleep (DSLP) (R07H)

000b: 0.27uS 100b: 0.80uS

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1	1	1
Deep Sleep	0	1	1	0	1	0	0	1	0	1

After this command is transmitted, the chip would enter the deep-sleep mode to save power.

001b: 0.34uS

101b: 1.54uS

The deep sleep mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be executed if check code = 0xA5.

010b: 0.40uS

110b: 3.34uS

011b: 0.54uS

111b: 6.58uS

(9) Data Start Transmission 1 (DTM1) (R10H)											
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	0	0	
	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	
Starting data	0	1									
transmission	0	1	Pixel(n-7	Pixel(n-6	Pixel(n-5	Pixel(n-4	Pixel(n-3	Pixel(n-2	Pixel(n-1	Pixel(n	
	0	1))))))))	

This command starts transmitting data and writes them into SRAM. To complete data transmission, command DSP (Data transmission Stop)

must be issued. Then the chip will start to send data/VCOM for panel.

In B/W mode, this command writes "OLD" data to SRAM.

In B/W/Red mode, this command writes "B/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

(10) Data Stop (DSP) (R11H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Stopping data	0	0	0	0	0	1	0	0	0	1
transmission	1	1	Data_flag	-	-	-	-	-	-	-

To stop data transmission, this command must be issued to check the data_flag.

Data flag: Data flag of receiving user data.

0: Driver didn't receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (R10h) or "Data Stop" (R11h) commands and when data_flag=1, the refreshing of panel starts and BUSY signal will become "0".

(11) Display Refresh (DRF) (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Refreshing the display	0	0	0	0	0	1	0	0	1	0

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.

After Display Refresh command, BUSY signal will become "0" and the refreshing of panel starts.

(12) Data Start Transmission 2 (DTM2) (R13H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	1	0	0	1	1
	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8
Starting data	0	1								
transmission	0	1	Pixel(n-7	Pixel(n-6	Pixel(n-5	Pixel(n-4	Pixel(n-3	Pixel(n-2	Pixel(n-1	Pixel(n
	U	1))))))))

This command starts transmitting data and writes them into SRAM.

In B/W mode, this command writes "NEW" data to SRAM.

In B/W/Red mode, this command writes "RES" data to SRAM.

Eink 元太科技

(13) VCOM LUT (LUTC) (R20H)

This command builds Look-up Table for VCOM

(14) W2W LUT (LUTWW) (R21H)

This command builds Look-up Table for White-to-White.

(15) B2W LUT (LUTBW/LUTR) (R22H)

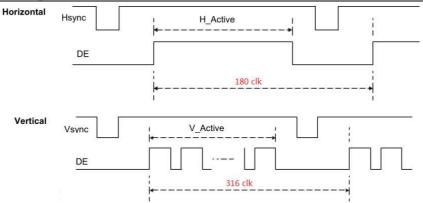
This command builds Look-up Table for Black-to-White.

(16) W2B LUT (LUTWB/LUTW) (R23H)

This command builds Look-up Table for White - to- Black.

(17) B2B LUT (LUTBB / LUTB) (R24H)

This command builds Look-up Table for Black - to- Black.


(18) PLL Control (PLL) (R30H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	1	1	0	0	0	0
Controlling PLL	0	1	-	-		M[2:0]			N[2:0]	

The command controls the PLL clock frequency. The PLL structure must support the following frame rates:

М	N	Frame Rate									
	1	29 Hz		1	86 Hz		1	150 Hz		1	200 Hz
	2	14 Hz		2	43 Hz		2	72 Hz		2	100 Hz
	3	10 Hz		3	29 Hz		3	48 Hz		3	67 Hz
1	4	7 Hz	3	4	21 Hz	5	4	36 Hz	7	4	50 Hz (Default)
	5	6 Hz		5	17 Hz		5	29 Hz		5	40 Hz
	6	5 Hz		6	14 Hz		6	24 Hz		6	33Hz
	7	4 Hz		7	12Hz		7	20 Hz		7	29 Hz
	1	57 Hz		1	114 Hz		1	171 Hz			
	2	29 Hz		2	57 Hz		2	86 Hz			
	3	19 Hz		3	38 Hz		3	57 Hz			
2	4	14 Hz	4	4	29Hz	6	4	43 Hz			
	5	11 Hz		5	23 Hz		5	34 Hz			
	6	10 Hz		6	19 Hz		6	29 Hz			
	7	8 Hz		7	16 Hz		7	24 Hz			

(19) Temperature Sensor Calibration (TSC) (R40H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	0	0	0	0	0	0
Sensing Temperature	1	1	D10/TS7	D9/TS6	D8/TS5	D7/TS4	D6/TS3	D5/TS2	D4/TS1	D3/TS0
	1	1	D2	D1	D0	-	-	-	-	-

This command reads the temperature sensed by the temperature sensor.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

TS[7:0]/D[10:3	Temperature (°C)	TS[7:0]/D[10:3	Temperature (℃)	TS[7:0]/D[10:3	Temperature (°C)
]]]	
1110_0111	-25	0000_0000	0	0001_1001	25
1110_1000	-24	0000_0001	1	0001_1010	26
1110_1001	-23	0000_0010	2	0001_1011	27
1110_1010	-22	0000_0011	3	0001_1100	28
1110_1011	-21	0000_0100	4	0001_1101	29
1110_1100	-20	0000_0101	5	0001_1110	30
1110_1101	-19	0000_0110	6	0001_1111	31
1110_1110	-18	0000_0111	7	0010_0000	32
1110_1111	-17	0000_1000	8	0010_0001	33
1111_0000	-16	0000_1001	9	0010_0010	34
1111_0001	-15	0000_1010	10	0010_0011	35
1111_0010	-14	0000_1011	11	0010_0100	36
1111_0011	-13	0000_1100	12	0010_0101	37
1111_0100	-12	0000_1101	13	0010_0110	38
1111_0101	-11	0000_1110	14	0010_0111	39
1111_0110	-10	0000_1111	15	0010_1000	40

Eink 元太科技

ED029TC1

1111_0111	-9	0001_0000	16	0010_1001	41
1111_1000	-8	0001_0001	17	0010_1010	42
1111_1001	-7	0001_0010	18	0010_1011	43
1111 1010	-6	0001 0011	19	0010 1100	44
1111 1011	-5	0001 0100	20	0010 1101	45
1111 1100	-4	0001 0101	21	0010 1110	46
1111 1101	-3	0001 0110	22	0010 1111	47
1111 1110	-2	0001 0111	23	0011 0000	48
1111_1111	-1	0001_1000	24	0011_0001	49

(20) Temperature Sensor Enable (TSE) (R41H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Enable Temperature	0	0	0	1	0	0	0	0	0	1
Sensor/Offset	0	1	TSE	-	-	-		TO[3	8:0]	

This command selects Internal or External temperature sensor.

TSE: Internal temperature sensor switch

0: Enable (Default)

1: Disable; using external sensor.

TO[3:0]: Temperature offset.

remperature	011000		
TO[3:0]	Calculation	TO[3:0]	Calculation
0000 b	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0110	6	1110	-2
0111	7	1111	-1

(21) Temperature Sensor Write (TSW) (R42H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0 1 0 0 0 1								
Write External Temperature	0	1	WATTR[7:0]								
Sensor	0	1	WMSB[7:0] WLSB[7:0]								
	0	0									

This command reads the temperature sensed by the temperature sensor.

WATTR: D[7:6]: I²C Write Byte Number

	00b : 1 byte (head byte only)
	01b : 2 bytes (head byte + pointer)
	10b : 3 bytes (head byte + pointer + 1st parameter)
	11b : 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)
D[5:3]:	User-defined address bits (A2, A1, A0)
D[2:0]:	Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor.

WLSB[7:0]: LSByte of write-data to external temperature sensor.

(22)) Temperature	Sensor Read ((TSR) ((R43H)
------	---------------	---------------	---------	--------

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	1	1	
Read External Temperature	1	1	RMSB[7:0]								
Sensor	1	1	RLSB[7:0]								

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

(23) VCOM And Data Interval Setting (CDI) (R50H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Set Interval Between Vcom and	0	0	0	1	0	1	0	0	0	0
Data	0	1	VBD[1:0]		DDX[1:0]		CDI[3:0]			

This command indicates the interval of Vcom and data output. When setting the vertical back porch, the total blanking will be kept

(20 Hsync).

VBD[1:0]: Border data selection

B/W/Red mode (BWR=0)

DDX[0	VBD[1:0]	LUT	DDX[0]	VBD[1:0]	LUT
	00	Floatin g		00	LUTB
	01	LUTR	1(D. 6. 1)	01	LUTW
0	10	LUTW	1(Default)	10	LUTR
	11	LUTB		11	Floatin g

B/W mode (BWR=1)

	DDX[0]	VBD[1:0]	LUT	DDX[0]	VBD[1:0]	LUT
		00	Floating		00	Floating
		01	LUTBW (1→0)		01	LUTWB $(1 \rightarrow 0)$
	0	10	LUTWB $(0 \rightarrow 1)$	1(Default)	10	LUTBW $(0 \rightarrow 1)$
		11	Floating		11	Floating

DDX[1:0]: Data polality.

DDX[1] for RED data, DDX[0] for BW data in the B/W/Red mode.

DDX[0] for B/W mode.

B/W/Red mode (BWR=0)

DDX[1:0]	Data{Red, B/W}	LUT	DDX[1:0]	Data{Red, B/W}	LUT
	00	LUTW		00	LUTR
	01	LUTB		01	LUTR
00	10	LUTR	10	10	LUTW
	11	LUTR		11	LUTB
	00	LUTB		00	LUTR
	01	LUTW		01	LUTR
01(Default)	10	LUTR	11	10	LUTB
	11	LUTR		11	LUTW

B/W mode (BWR=1)

WK I)					
DDX[0	Data{New, Old}	LUT	DDX[0]	Data{New, Old}	LUT
-	00	LUTWW (0→0)		00	LUTBB (0→0)
	01	LUTBW (1→0)		01	LUTWB $(0 \rightarrow 1)$
0	10	LUTWB $(0 \rightarrow 1)$	1(Default)	10	LUTBW (1→0)
	11	LUTBB $(1 \rightarrow 1)$		11	LUTWW $(1 \rightarrow 1)$

CDI[3:0]: Vcom and data interval

CDI[3:0	Vcom and Data Interval	CDI[3:0	Vcom and Data Interval
]]	
0000 b	17 hsync	0110	11
0001	16	0111	10 (Default)
0010	15		
0011	14	1101	4
0100	13	1110	3
0101	12	1111	2

(24) Low Power Detection (LPD) (R51H)

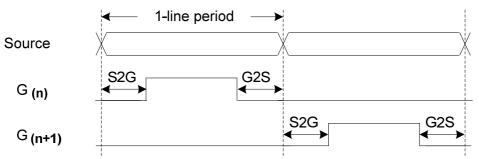
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	0	1	0	0	0	1
Detect Low Power	1	1	-	-	-	-	-	-	-	LPD

This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Interval Low Power Detection Flag

0: Low power input (VDD < 2.5V) 1: Normal status (default)

(25) TCON Setting (TCON) (R60H)


Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Gate/Source Non-overlap	0	0	0	1	1	0	0	0	0	0	
Period	0	1	S2G[3:0]				G2S[3:0]				

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or G2S[3:0]	Period	S2G[3:0] or G2S[3:0]	Period
0000b	4		
0001	8	1011	48
0010	12(Default)	1100	52
0011	16	1101	56
0100	20	1110	60
0101	24	1111	64

Period = 660 nS.

(26) Resolution Setting (TRES) (R61H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0 1 1 0 0 0 0						
	0	1		0	0					
Set Display Resolution	0	1	-	-	-	-	-	-	-	VRES[8]
	0	0				VR	ES[7:0]			

This command defines alternative resolution and this setting is of higher priority than the RES[1:0] in R00H (PSR).

HRES[7:3]: Horizontal Display Resolution

VRES[8:0]: Vertical Display Resolution

Active channel calculation:

GD : First active gate = G0 (Fixed); LAST active gate = VRES[8:0] - 1

SD : First active source =S0 (Fixed); LAST active source = HRES[7:3]*8 - 1

(27) Revision (REV) (R70H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	1	1	0	0	0	0
Chip Revision	1	1				LUT	REV			

The LUT_REV is read from OTP address = 0x001.

(28) Get Sta	tus (FL	G) (R71H)						
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	1	1	0	0	0	1
Read Flags	_				2	2		РО	РО	
	1	1	-	PTL_flag	I ² C_ERR	I ² C_BUSY	data_ flag	N	F	BUSY

This command reads the IC status.

PTL_FLAG Partial display status (high: partial mode)

 I^2C_ERR : I^2C master error status

I²C_BUSY: I²C master busy status (low active)

data_flag: Driver has already received all the one frame data

- PON: Power ON status
- POF: Power OFF status

BUSY: Driver busy status (low active)

(29) Auto Measure Vcom (AMV) (R80H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	1	0	0	0	0	0	0	0
Automatically measure Vcom	0	1	-	-	AMV]	T[1:0	XON	AMVS	AMV	AMVE

This command reads the IC status.

AMVT[1:0]: Auto Measure Vcom Time 00b: 3s 01b: 5s (Default)

10b: 8s 11b: 10s

XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default)

1: All Gate ON during Auto Measure VCOM period.

AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default)

1: Source output VDHR during Auto Measure VCOM period.

AMV: Analog signal

0: Get Vcom value with the VV command (R81h) (default)

1: Get Vcom value in analog signal. (External analog to digital converter)

AMVE: Auto Measure Vcom Enable (/Disable)

0: No effect

1: Trigger auto Vcom sensing.

ED029TC1

(30) Vcom Value (VV) (R81H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	1	0	0	0	0	0	0	1
Automatically measure Vcom	1	1	-	-			VV	[5:0]		

This command gets the Vcom value.

VV[5:0]: Vcom Value Output

VV[5:0]	Vcom value
00 0000b	-0.10 V
00 0001b	-0.15 V
00 0010b	-0.20 V
:	:
11 1010b	-3.00 V

(31) VCM_DC Setting (VDCS) (R82H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Set	0	0	1	0	0	0	0	0	1	0
VCM_DC	0	1	-	-			VDC	S[5:0]		

This command sets VCOM_DC value

VDCS[5:0]: VCOM_DC Setting

VDCS[5:0]	Vcom value
00 0000b	-0.10 V (default)
00 0001b	-0.15 V
00 0010b	-0.20 V
:	:
11 1010b	-3.00 V

(32) Partial Window(PTL) (R90H)

(= _) =		(
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0			
	0	0	1	0	0	1	0	0	0	0			
	0	1			HRST[[7:3]		0	0	0			
	0	1			HRED	[7:3]		1	1	1			
Set Partial	0	1	-	-	-	-	-	-	-	VRST[8]			
Window	0	1				١	/RST[7:0]					
	0	1	-	-	-	-	-	-	-	VRED[8]			
	0	1		VRED[7:0]									
	0	1	-	-	-	-	-	-	-	PT_SCAN			

This command sets partial window.

HRST[7:3]: Horizontal start channel bank. (value 00h~13h)

HRED[7:3]: Horizontal end channel bank. (value 00h~13h). HRED must be greater than HRST.

VRST[8:0]: Vertical start line. (value 000h~127h)

VRED[8:0]: Vertical end line. (value 000h~127h). VRED must be greater than VRST.

PT_SCAN: 0: Gates scan only inside of the partial window.

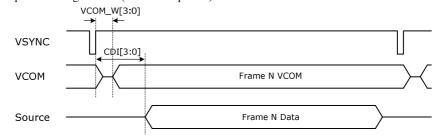
1: Gates scan both inside and outside of the partial window. (default)

(33) Partial In (PTIN) (R91H)

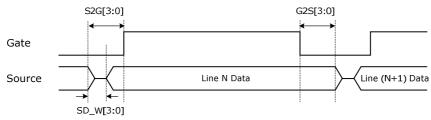
Action	W/R		D7	D6	D5	D4		D2	D1	D0
Partial In	0	0	1	0	0	1	0	0	0	1

This command makes the display enter partial mode.

(34) Partial Out (PTOUT) (R92H)


Action	W/R	C/D	D7		D5	D4		1)2	D1	D0
Partial In	0	0	1	0	0	1	0	0	1	0

This command makes the display exit partial mode and enter normal mode.


(35) Power Saving (PWS) (RE3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Power Saving for	0	0	1	1	1	0	0	0	1	1
Vcom &Source	0	1		VCOM	W[3:0]			SD W	/[3:0]	

This command is set for saving power during fresh period. If the output voltage of VCOM / Source is from negative to positive or from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two parameters. $VCOM_W[3:0]$: VCOM power saving width (unit = line period)

SD_W[3:0]: Source power saving width (unit = 660nS)

7. Display Module Electrical Characteristics

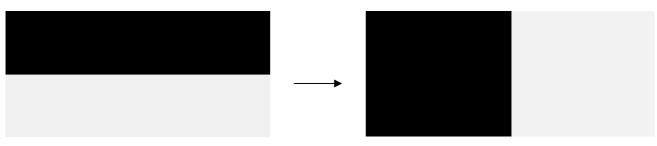
7-1) Absolute Maximum Ratings:

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VDD	-0.3 to +6.0	V
Logic Input Voltage	V_{IN}	-0.3 to VDD +2.4	V
Operating Temp. range	T _{OPR}	0 to +50	°C
Storage Temp. range	T _{STG}	-25 to +70	°C

Eink 元太科技

7-2) Display Module DC characteristics

The following specifications apply for: VSS = 0V, VDD = 3.3V, $TA = 25^{\circ}C$


	DIGITAL DC CHARACTERISTICS								
Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit			
VDD	Logic supply voltage		2.3	3.3	3.6	V			
VIL	Low level input voltage	Digital input pins	0		0.3Xvd D	v			
Vih	High level input voltage	Digital input pins	0.7xVD D		VDD	v			
Voh	High level output voltage	Digital input pins, IOH=400 uA	VDD-0.4			V			
VOL	Low level output voltage	Digital input pins, IOL=-400 uA	0		0.4	v			
Imstb	Module stand-by current	Shut-down mode		5		uA			
Imds	Module deep sleep current	Deep sleep mode		0.4	1	uA			
Imopr	Module operating current			8		mA			
Р	Operation Power Dissipation	VDD=3.3V with DC-DC		26.4		mW			
PSTBY	Standby Power Dissipation	VDD=3.3V		16.5		uW			

The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern. (Note 7-1)

- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WF
- Vcom is recommended to be set in the range of assigned value \pm 0.1V.

Note 7-1

The Typical power consumption

ED029TC1

7-3) Panel AC Characteristics

7-3-1) Oscillator frequency

ne	Parameter	Symbol	Conditions	Min	Тур	Max	Unit
	Internal Oscillator frequency	Fosc	VCI=2.7 to 3.6V	-	1.625	-	MHz

The following specifications apply for : VSS = 0V, VDD = 3.3V, T_A = $25^{\circ}C$

7-3-2) MCU Interface

7-3-2-1) MCU Interface Selection

In this module, there are 4-wire SPI and 3-wire SPI that can communicate with MCU. The MCU interface mode can be set by hardware selection on BS1 pins. When it is "Low", 4-wire SPI is selected. When it is "High", 3-wire SPI (9 bits SPI) is selected.

Pin Name	Data/Command Interface			Control Signal	
Bus interface	D1	D0	CS#	D/C#	RES#
SPI4	SDIN	SCLK	CS#	D/C#	RES#
SPI3	SDIN	SCLK	CS#	L	RES#

 Table 7-1: MCU interface assignment under different bus interface mode

Note 7-2: L is connected to VSS

Note 7-3: H is connected to VCI

7-3-2-2) MCU Serial Interface (4-wire SPI)

E Ink Holdings

The 4-wire SPI consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN.

Function	CS#	D/C#	SCLK
Write Command	L	L	1
Write data	L	Н	1

Table 7-2: Control pins of 4-wire Serial Peripheral interface

Note 7-4: †stands for rising edge of signal

ink

SDIN is shifted into an 8-bit shift register in the order of D7, D6, ... D0. The data byte in the shift register is written to the Graphic Display Data RAM (RAM) or command register in the same clock. Under serial mode, only write operations are allowed.

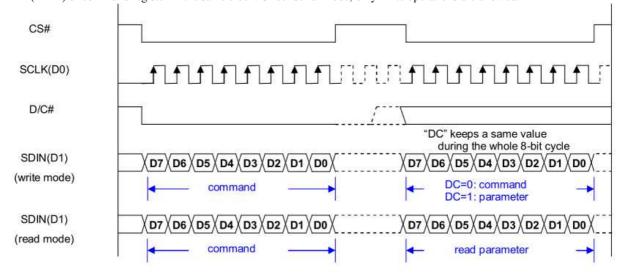
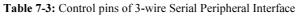


Figure 7-1: Write procedure in 4-wire Serial Peripheral Interface mode

ınk 元太科技

E Ink Holdings

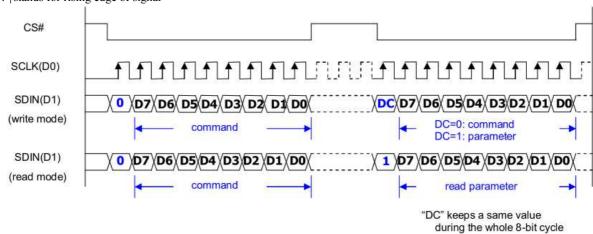
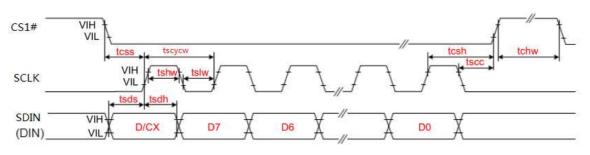

7-3-2-3) MCU Serial Interface (3-wire SPI)

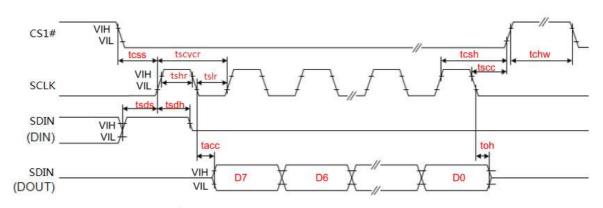
The 3-wire serial interface consists of serial clock SCLK, serial data ADIN and CS#.

In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN, The pin D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Function	CS#	D/C#	SCLK
Write Command	L	Tie LOW	1
Write data	L	Tie LOW	1

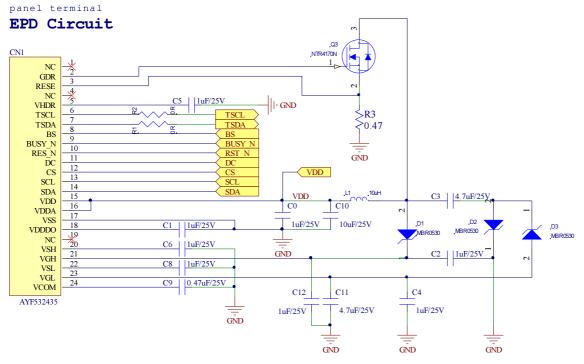




Figure 7-2: Write procedure in 3-wire Serial Peripheral Interface mode

Note 7-5: †stands for rising edge of signal

3-wire Serial Interface - Write

3-wire Serial Interface - Read


Symbol	Signal	Parameter	Min	Тур	Max	Unit
tess		Chip Select Setup Time	60	-	-	ns
tcsh		Chip Select Hold Time	65	-	-	ns
tscc	CS#	Chip Select Setup Time	20	-	-	ns
tchw		Chip Select Setup Time	40	-	-	ns
tscycw		Serial clock cycle (write)	100	-	-	ns
tshw		SCL "H" pulse width (write)	35	-	-	ns
tslw		SCL"L" pulse width (write)	35	-	-	ns
tscycr	SCL	Serial clock cycle (Read)	150	-	-	ns
tshr		SCL "H" pulse width (Read)	60	-	-	ns
tslr		SCL "L" pulse width (Read)	60	-	-	ns
tsds		Data setup time	30	-	-	ns
tsdh	SDIN	Data hold time	30	-	-	ns
tacc	(DIN)	Access time	-	-	10	ns
toh	(DOUT)	Output disable time	15	-	-	ns

7-4) Power Consumption

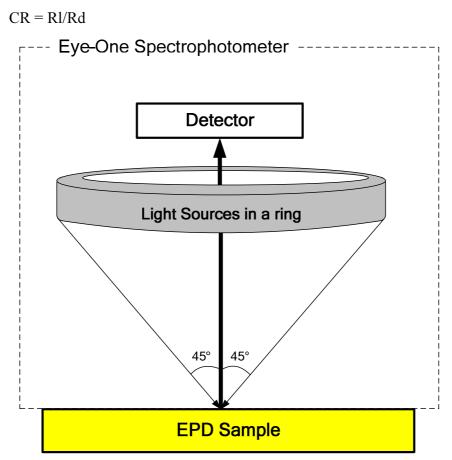
Parameter	Symbol	Conditions	ТҮР	Max	Unit	Remark
Panel power consumption during update	-	25°C	26.4		mW	-
Power consumption in standby mode	-	25°C	16.5		uW	-

7-5) Reference Circuit

8. Optical characteristics

8-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.


						T = 25	^o C
Symbol	Parameter	Conditions	Min	Тур.	Max	Unit	Note
R	Reflectance	White	30	35	-	%	Note 9-1
CR	Contrast Ratio	-	8	10	-		-

WS : White state , DS : Dark state

Note 8-1 : Luminance meter : Eye – One Pro Spectrophotometer

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd) :

ED029TC1

8-3) Reflection Ratio

The reflection ratio is expressed as :

 $R = Reflectance Factor_{white board} x (L_{center} / L_{white board})$

 L_{center} is the luminance measured at center in a white area . $L_{white board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS:

Fink 元太科技

E Ink Holding

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the

EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Eink 元太科技 E Ink Holding

Data sheet status

Product specification

This data sheet contains final product specifications subjected to changes without notice.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

High Temperature High

Humidity Operational test High Temperature High

Humidity Storage test

Thermal cycles

Solar radiation test

Electrostatic Discharge

10. Reliability test

1

2

3

4

5

6

7

8

9

TEST	CONDITION	REMARK
High Temperature Storage	Ta= 70°C 40% RH, 240Hrs	(Test in White Pattern)
Low Temperature Storage	Ta= -25°C, 240Hrs	(Test in White Pattern)
High Temperature Operation	Ta= 50°C 30% RH, 240Hrs	
Low Temperature Operation	Ta= 0°C, 240Hrs	

Ta= 40°C 80% RH, 240Hrs

Ta= 60°C 80% RH, 240Hrs

765 W/m² for 168hrs,40 $^{\circ}$ C

-25°C(30min)~60°C (30min),

50 cycle, 1Hr/cycle

(Machine model) +/- 200V

 0Ω , 200pF

Actual EMC level to	be measured on	customer application.
		easterner apprication.

Note: The protective film must be removed before temperature test.

< Criteria >

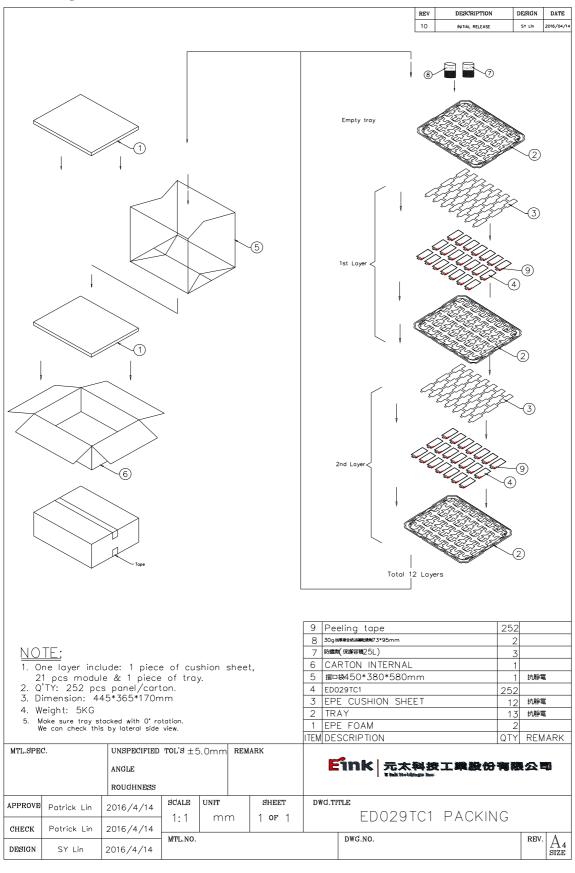
In the standard conditions, there is not display function NG issue occurred.

All the cosmetic specification is judged before the reliability stress.

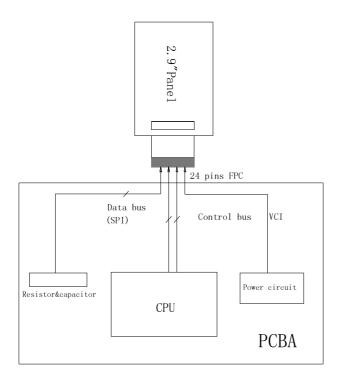
(Test in White Pattern)

(Test in White Pattern)

(Test in White Pattern)


Non-operation

ED029TC1


11. Packing

12.Block Diagram

