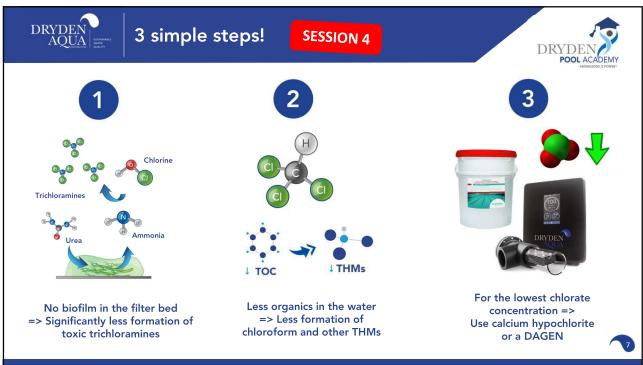
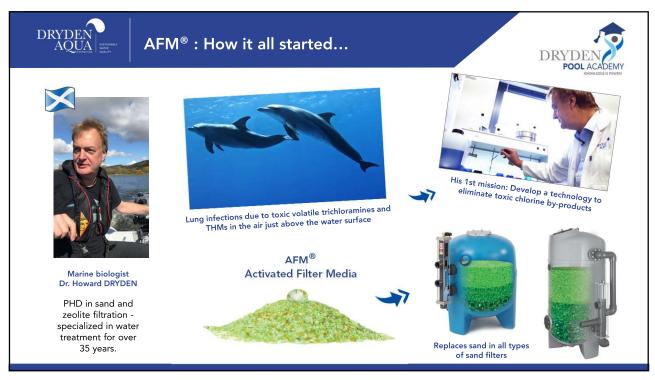

9:30 AFM Introduction
What is AFM® and what does activation mean?
New AFM® ng: the game changer!
AFM® filtration and backwash performance
The new 50/50 layering

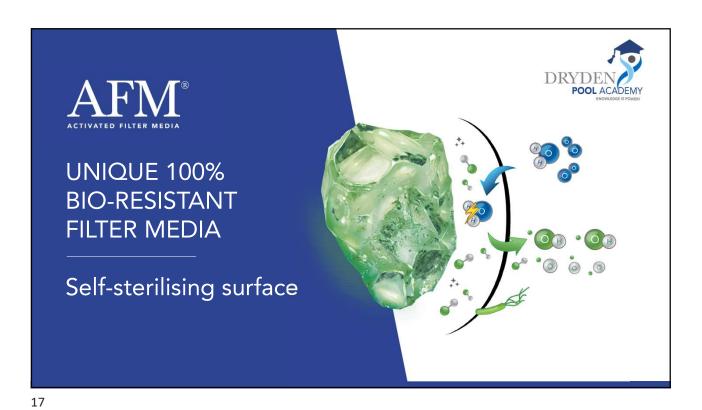

10:30 Q&A: Questions / Answers



DRYDEN
AQUA
DRYDEN
POOL ACADEMY

AFM® Activated Filter Media
INTRODUCTION





REMINDER
The 3 problems of biofilm

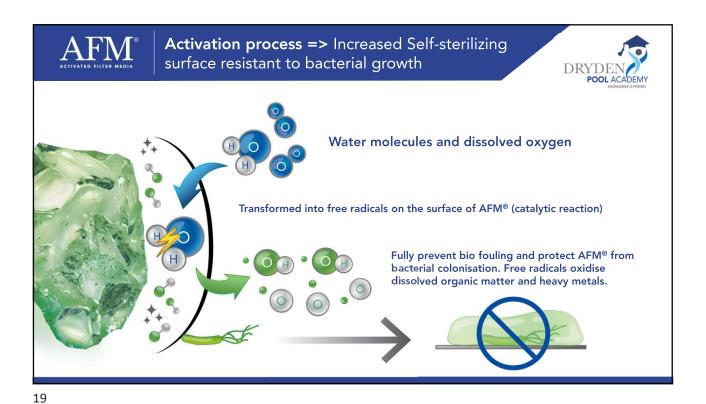
SESSION 4

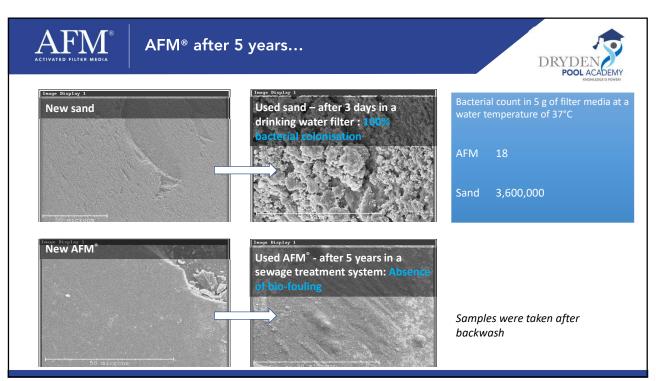
SESSION 4

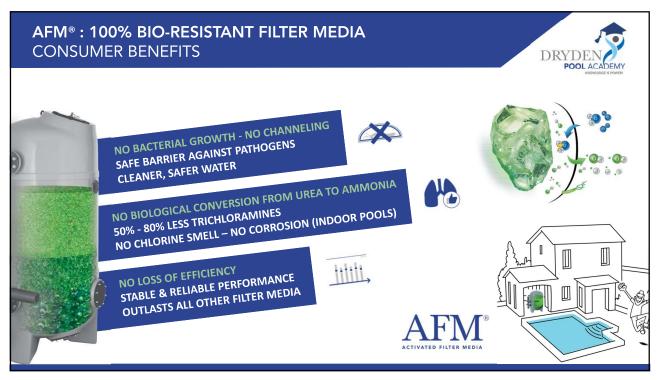
SESSION 4

SESSION 4

Trichloramines

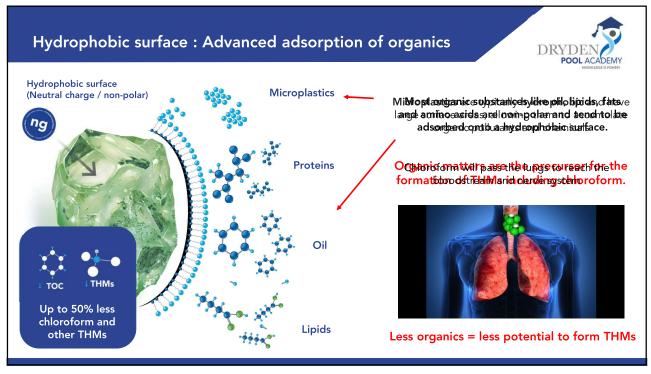

Chlorine

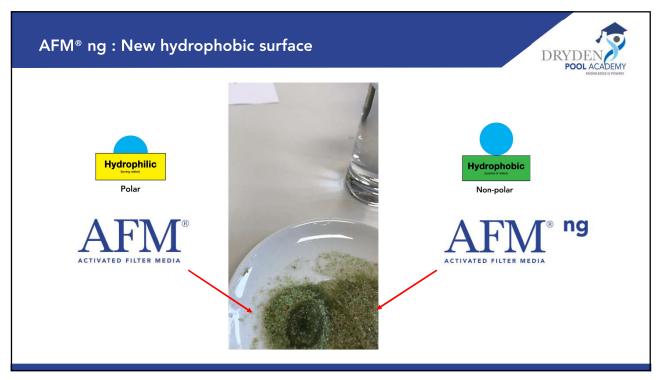

Urea

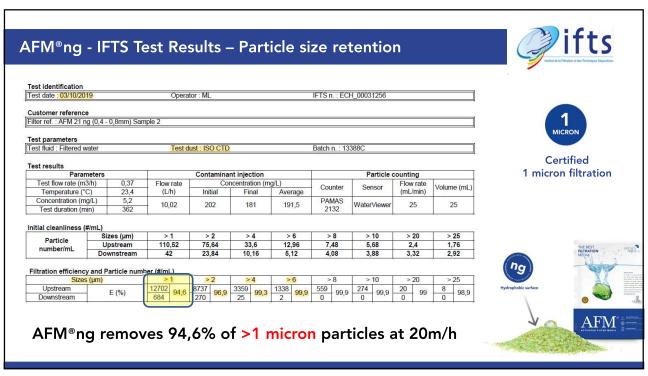

Ammonia

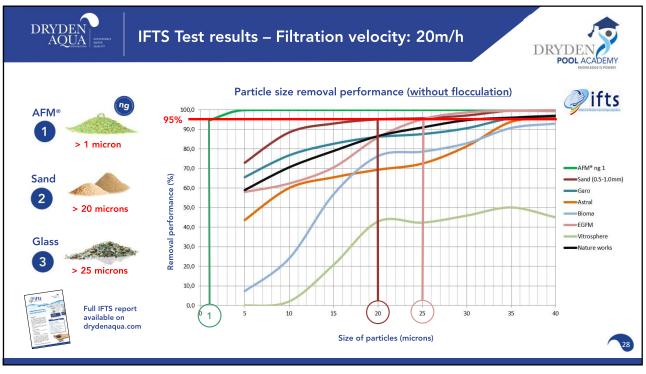
Whome" for growing pathogens

Responsible for the formation of trichloramines => biological conversion from urea to ammonia in the filter bed









Sand 0.5 – 1.0 mm- IFTS Test Results – Particle size retention

v counting data (se			vs test	nerior															
Cumulative cou			10.100	, porioc					_										
Partici	e size (µm)	> 5	R,	- 10	R ₂	> 15	R ₃	> 20	R ₄	> 25	R ₅	> 30	R ₆	> 40	R ₇	> 45	R ₈		Γ
Counting period		μm	E%	um	E%	μm	E%	μm											
Upstream initia	al counts	27		10		3		1		0		0		0		0			
4	Up	6623	2	1141	3	310	6	81	18	27	49	13	106	4	457	2	776		Г
,	Down	2960	55,30	349	69,43	48	84,47	4	94,57	1	97,95	0	99,06	0	99,78	0	100		
2	Up	62401	4	25943	9	7498	15	1438	21	320	22	118	32	32	320	21	00		
-	Down	15696	74,85	779	89,29	499	93,35	69	95,19	14	95,52	4	96,91	0	99,69	0	100		
3	Up																		
	Down																		L
4	Up																		L
	Down							Į.											
5	Up																		
	Down																		L
6	Up																		L
_	Down																		L
Average	Up		4	13542	9	3904	14	759	21	173	23	65	35	18	330	12	8794		L
,ge	Down	9328	72,97	1564	88,45	273	93,00	37	95,16	7	95,71	2	97,12	0	99,70	0	100	1	ı

«Fresh» sand (0.5 – 1.0 mm) can remove

73% of >5 micron particles at 20m/h 95% of >20 micron particles at 20m/h

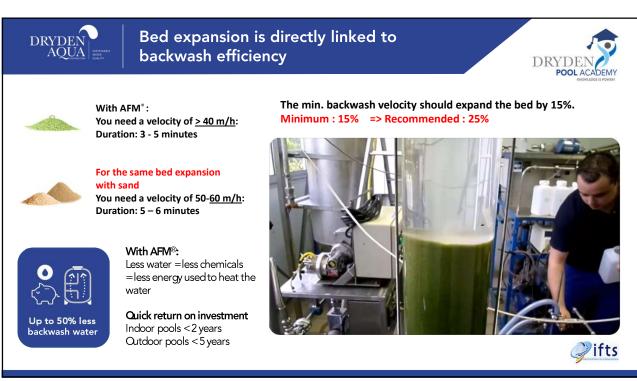
29

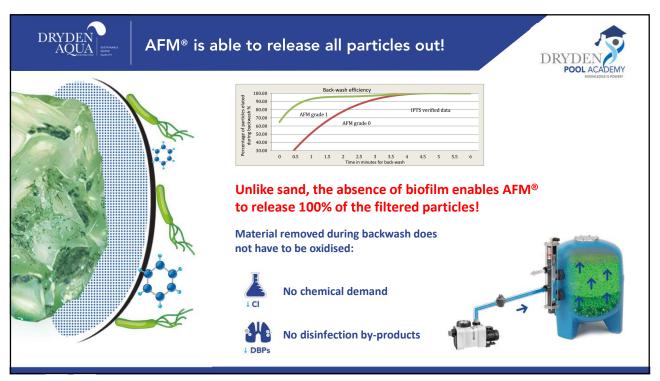
NatureWorks «Hi-tech glass filter media» - IFTS Test results

TEST RESUL	.TS													Filter re	f. Hi-tech	glass f	lter med	ia (IFTS	: 6566)
Raw counting	Raw counting data (see figure 1-2-3)																		
	tion ratio and efficitive counts (N/mL)	ciency*	vs. test	period															
Period	∆p (bar)			> 5 µm		> 10 µm		> 20 µm		> 30 µm		> 40 µm		> 45 µm		> 50 µm		> 60 µm	
1	0,15	Up Down	E (%)	5510 2469	55,19	653,3 134,8	79,37	22,39 0,33	98,51	2,85 0,08	97,26	0,54	95,93	0,24 0,003	98,72	0,14	100	0,05	100
2	0,6	Up Down	E (%)	13400 5283	60,58	1761 570,1	67,62	46,71 8,77	81,22	5,03 0,33	93,39	0,62	97,62	0,25 0,01	97,67	0,12	100	0,04	100
A	Average Up Down		Eff.	9455 3876	59,07	1207 352,5	70,66	34,55 4,55	86,6	3,94 0,21	94,74	0,58 0,02	96,86	0,25 0,01	98,17	0,13 0,00	100	0,05 0,00	100

*Note: Efficiency value is rounded to 100% when above 99.995

«Fresh» Nature works can remove

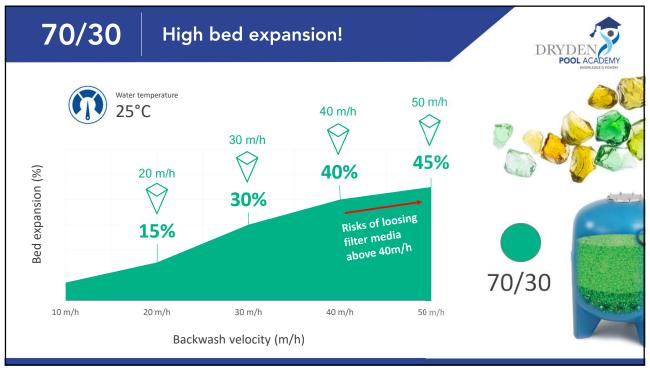

59% of >5 micron particles at 20m/h 94,7% of >30 micron particles at 20m/h

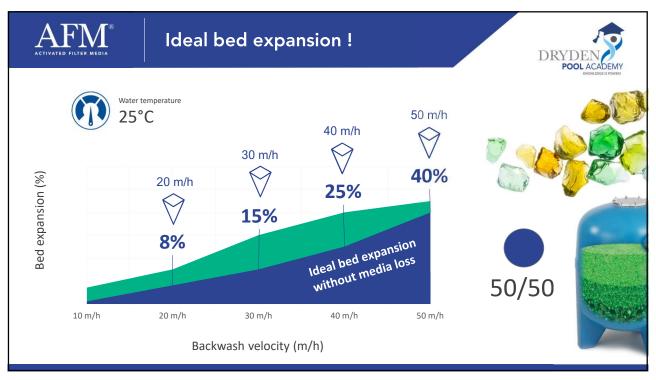


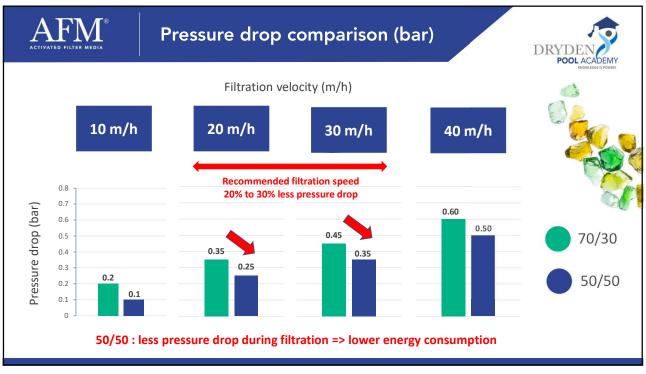
Filters < 800mm

Filters > 800mm

GRADE 1
0.4 - 1.0 mm


GRADE 2
1.0 - 2.0 mm


GRADE 3
2.0 - 4.0 mm



NG Grade 2 becomes a filtering layer 100 90 90% 70% G-1 / 30% G-2 80 Sand 0.5 -(0.7 - 2.0mm) 1.0mm Percentage removal (%) 73% 70 50% G-1 / 50% G-2 60 50 New hydrophobic AFM® ng Grade 2 40 100% G-2 performs better than 30 quartz sand - filtering 20 90% of the 5-micron Sand 0.5 - 1.0mm IFTS results 2014 particles 10 1 micron 6 microns 2 microns 4 microns 8 microns 10 microns Particle size (microns) *Filtration speed: 20m/h – Water temp. 25°C

AFM®

Promise of AFM® in private pools

- Much cleaner & clearer water within 24 hours
- 2 No chlorine smell skin and eye irritations

Reduced chemical consumption and pool maintenance
Saves up to 50% of chemicals – depending on size of the filter and the quantity of filter media

But it is a lot more expensive: The EL-factor

Filter	D 520	D 640	D 720	D 840
bags	5	6	12	16
Sand (15€)	75	90	180	240
AFM (38€)	190	228	456	608
Extra costs	115	138	276	368

EL-Factor 8.0 1.7 2.2 0.7

Dryden Aqua

45

45

Promise of AFM® in public pools

- No chlorine smell => Very low trichloramine levels Inorganic chloramines (mono-, di- and trichloramine) are 3 to 5 times lower using AFM® compared to sand.
- THM's 50% lower
- Substantial backwash water savings Return of investment usually < 2 years in indoor pools

Total combined chlorine can be as high as with sand because of nonvolatile organic chloramines. They can accumulate in the water. They are harmless.

With 5 – 10 cm of activated carbon you can solve that problem and bring total combined chlorine < 0.2mg/l.

AFM®

Perstorp Swim hall - Sweden

- 50 meter outdoor pool
- 25 meter indoor pool
- 140 m³ therapy pool
- Spa
- 4 x Ø 2000 filters
- 4 x Ø 1200 filters
- 24 tons of AFM®

47

Perstorp Swim hall - Results Letter from • Chemicals: Lars Ottosen, Manager, • "Acid from 600 L to 225 L per month" Ugglebadet Perstorp • "Chlorine reduced 30 %" • Water consumption reduced with: • "4,65 m³ per day in therapy pool" • "4 m³ in 25 meter pool" • Air: · "Smell of chlorine is gone" · "Customers asks whether they have stopped using chlorine" • "We have now our coffee table in the swim hall. Wasn't possible before because of aggressive air" ROI is now calculated at 2 years!! BR. Lars Ottosen, Manager

SESSION 6 DAISY: DRYDEN AQUA INTEGRATED SYSTEM - What is DAISY®? The biological approach - APF®: The only multi-spectrum flocculant & coagulant on the pool market - ACO®: The best stabilizer for all outdoor swimming pools - NoPhos: The biological solution to prevent algae

49

