November 16, 2018

Heaven’s Trail, LLC

Subject: Report of Product Testing
Product Designation: Hang Around
TEC Project # 18-1471
TEC Lab No. 18-T118

Dear Mr. Berry:

Testing Engineering and Consulting Services, Inc. (TEC Services) is an independent testing laboratory with a quality system accredited by AASHTO R18, ANS/ISO/IEC 17025:2005, and the Army Corp of Engineers. TEC Services is pleased to present this report of our test results for the subject submitted product. The testing was performed at our Lawrenceville, Georgia facility in August of 2018. The product was received on August 22, 2018. Our services were performed in accordance with the terms and conditions of our Service Agreement TEC # 18-1471. The test results presented only pertain to the product tested.

The purpose of our testing was to evaluate the mechanical properties of the submitted product in accordance with the most recent ASTM Standards. All testing was conducted on the one single submitted product (Photo 1). Product instructions were provided by the manufacturer. The product was assembled and mounted to a wooden pole with a diameter of 10 ± 1 inches in accordance with the provided instructions. It is our understanding that the submitted product has a rated maximum load capacity of 400 lbs and is classified as a “Fixed Position or Hang-on” type treestand intended for single occupancy use. The provided instructions were reviewed for content in accordance with ASTM F2123. Warning labels were also checked to verify compliance with ASTM F2121. Checklists pertaining to the review of both the instructions and warning labels (Photo 2) are attached to this report.

- ASTM F2126-10 Standard Test Method for Treestand Static Load Capacity
- ASTM F2125-13 Standard Test Method for Treestand Adherence and Static Stability
- ASTM F2531-13 Standard Test Method for the Load Capacity of Treestand Seats
- ASTM F2123-13 Standard Practice for Treestand Instructions
- ASTM F2121-13 Standard Practice for Treestand Labels
ASTM F2126 – Treestand Static Load Capacity (Platform Loading)

Static load testing was performed using a 10” x 10” x 0.5” steel plate which was placed in the center of the platform. Load was applied perpendicular to the plate using an electric screw driven linear actuator with a 5,000 lbs S-type load cell. Deflection measurements were taken at 6 points using string potentiometers. Two potentiometers were placed at the rear of the stand six inches from the mounting pole, two were placed six inches from the center of the loading plate, and the remaining two placed equidistance on the further points of the platform. The load cell and potentiometer were zeroed prior to the load application. Load was applied in increments of 25% of the rated load capacity until reaching 100%. The stand was then un-loaded and measurements for return deflections were recorded. The stand was then loaded and un-loaded in increments of 25% until reaching 2.5 times the rated load capacity (1,000 lbs). Test results are reported in Table 1. Graphical representations of the deflection measurements are presented in Figures 1 & 2. Photos of the test configurations are shown in Photos 3 & 4 attached to this report.

<table>
<thead>
<tr>
<th>Loads</th>
<th>% Rated Capacity</th>
<th>Theoretical Load (lbs)</th>
<th>Actual Load (lbs)</th>
<th>Front</th>
<th>Middle</th>
<th>Rear</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Right (1)</td>
<td>Left (2)</td>
<td>Right (3)</td>
<td>Left (4)</td>
</tr>
<tr>
<td>25%</td>
<td>100</td>
<td>125</td>
<td></td>
<td>0.191</td>
<td>0.179</td>
<td>0.122</td>
<td>0.109</td>
</tr>
<tr>
<td>50%</td>
<td>250</td>
<td>250</td>
<td></td>
<td>0.335</td>
<td>0.320</td>
<td>0.211</td>
<td>0.196</td>
</tr>
<tr>
<td>75%</td>
<td>375</td>
<td>375</td>
<td></td>
<td>0.610</td>
<td>0.572</td>
<td>0.391</td>
<td>0.361</td>
</tr>
<tr>
<td>100%</td>
<td>500</td>
<td>501</td>
<td></td>
<td>0.921</td>
<td>0.869</td>
<td>0.596</td>
<td>0.564</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td></td>
<td>0.250</td>
<td>0.232</td>
<td>0.192</td>
<td>0.173</td>
</tr>
<tr>
<td>125%</td>
<td>625</td>
<td>630</td>
<td></td>
<td>0.983</td>
<td>0.927</td>
<td>0.615</td>
<td>0.576</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td></td>
<td>-0.009</td>
<td>-0.012</td>
<td>-0.006</td>
<td>-0.009</td>
</tr>
<tr>
<td>150%</td>
<td>750</td>
<td>750</td>
<td></td>
<td>1.605</td>
<td>1.501</td>
<td>1.052</td>
<td>0.972</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td></td>
<td>0.141</td>
<td>0.126</td>
<td>0.119</td>
<td>0.106</td>
</tr>
<tr>
<td>175%</td>
<td>875</td>
<td>875</td>
<td></td>
<td>1.843</td>
<td>1.723</td>
<td>1.202</td>
<td>1.110</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td></td>
<td>0.117</td>
<td>0.101</td>
<td>0.088</td>
<td>0.078</td>
</tr>
<tr>
<td>200%</td>
<td>1000</td>
<td>1001</td>
<td></td>
<td>2.333</td>
<td>2.169</td>
<td>1.533</td>
<td>1.407</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td></td>
<td>0.126</td>
<td>0.110</td>
<td>0.093</td>
<td>0.081</td>
</tr>
</tbody>
</table>

Table 1 – ASTM F2126 – Platform Loading Test Results
Figure 1 – ASTM F2126 – Platform – Deflection Measurements

Figure 4 – ASTMD F2126 – Platform – Deflection

Average Lateral Deflections Under Incremental Loading

Measurement Location

Rear | Middle | Front

Average Deflection (in.)

0.00 | 0.10 | 0.20

0.30 | 0.40 | 0.50

0.60 | 0.70 | 0.80

0.90 | 1.00 | 1.10

1.20 | 1.30 | 1.40

1.50 | 1.60 | 1.70

1.80 | 1.90 | 2.00

2.10 | 2.20 | 2.30

2.40

0.00 lbs | 250 lbs | 375 lbs | 500 lbs | 625 lbs | 750 lbs | 875 lbs | 1000 lbs
ASTM F2125 – Treestand Adherence and Stability

Adherence and stability testing was performed using a 5” x 10” x 0.5” steel plate. Load was applied perpendicular to the plate at each of the four corners of the platform using an electric screw driven linear actuator with a 5,000 lbs S-type load cell. Deflection measurements were taken at 6 points using string potentiometers. Two potentiometers were placed at the rear of the stand six inches from the mounting pole, two were placed six inches from the center of the loading plate, and the remaining two placed equidistance on the further points of the platform. The load cell and potentiometer were zeroed prior to the load application. A trial load of 80% of the rated load capacity was applied to each corner and un-loaded prior to an application of 100% of the rated load capacity. Test results are reported in Table 2. Testing is shown in Photos 5 & 6 attached to this report.

Table 2 – ASTM F2125 – Treestand Adherence and Stability Test Results

<table>
<thead>
<tr>
<th>Location</th>
<th>% Rated Capacity</th>
<th>Theoretical Load (lbs)</th>
<th>Actual Load (lbs)</th>
<th>Deflections (in.)</th>
<th></th>
<th></th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Rated Capacity</td>
<td>Front Load (lbs)</td>
<td>Middle Load (lbs)</td>
<td>Rear Load (lbs)</td>
<td>Right (1)</td>
<td>Left (2)</td>
<td>Right (3)</td>
</tr>
<tr>
<td>Front Left Side</td>
<td>80%</td>
<td>400</td>
<td>400</td>
<td>0.943</td>
<td>1.548</td>
<td>0.535</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>-0.021</td>
<td>0.042</td>
<td>-0.018</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>500</td>
<td>506</td>
<td>1.229</td>
<td>1.969</td>
<td>0.706</td>
<td>1.178</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>0.006</td>
<td>0.044</td>
<td>-0.005</td>
<td>0.026</td>
</tr>
<tr>
<td>Front Right Side</td>
<td>80%</td>
<td>400</td>
<td>410</td>
<td>1.557</td>
<td>0.897</td>
<td>0.936</td>
<td>0.484</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>0.205</td>
<td>0.155</td>
<td>0.156</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>500</td>
<td>505</td>
<td>1.905</td>
<td>1.049</td>
<td>1.129</td>
<td>0.585</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>0.176</td>
<td>0.085</td>
<td>0.138</td>
<td>0.099</td>
</tr>
<tr>
<td>Rear Left Side</td>
<td>80%</td>
<td>400</td>
<td>414</td>
<td>0.068</td>
<td>0.285</td>
<td>0.053</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>-0.055</td>
<td>-0.046</td>
<td>-0.028</td>
<td>-0.021</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>500</td>
<td>510</td>
<td>0.142</td>
<td>0.399</td>
<td>0.093</td>
<td>0.390</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>-0.007</td>
<td>0.001</td>
<td>-0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>Rear Right Side</td>
<td>80%</td>
<td>400</td>
<td>400</td>
<td>0.400</td>
<td>0.129</td>
<td>0.330</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>0.038</td>
<td>-0.014</td>
<td>0.039</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>500</td>
<td>510</td>
<td>0.487</td>
<td>0.179</td>
<td>0.398</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>Unloaded</td>
<td></td>
<td></td>
<td>0.018</td>
<td>-0.001</td>
<td>0.022</td>
<td>0.003</td>
</tr>
</tbody>
</table>
ASTM F2531 – Treestand Seat Load Capacity

Static load testing of the seat was performed using a 10” x 10” x 0.5” steel plate which was placed in the center of the seat. Load was applied perpendicular to the plate by means of an electric screw driven linear actuator with a 5,000 lbs S-type load cell. Deflection measurements were taken at 6 points using string potentiometers. Two potentiometers were placed at the rear of the rear of the seat, two were placed centered on the outer edges of the loading plate, and the remaining two placed equidistance on the further points of the seat. The load cell and potentiometer were zeroed prior to the load application. Load was applied in increments of 25% of the rated load capacity until reaching 100%. The stand was then un-loaded and measurements for return deflections were recorded. The stand was then loaded and un-loaded in increments of 25% until reaching 1.5 times the rated load capacity (600 lbs). Test results are reported in Table 3. Graphical representations of the deflection measurements are presented in Figures 3-4. Photos of the test configurations are shown in Photos 7 and 8 attached to this report.

<table>
<thead>
<tr>
<th>% Rated Capacity</th>
<th>Theoretical Load (lbs)</th>
<th>Actual Load (lbs)</th>
<th>Front</th>
<th>Middle</th>
<th>Rear</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Right (1)</td>
<td>Left (2)</td>
<td>Right (3)</td>
<td>Left (4)</td>
</tr>
<tr>
<td>25%</td>
<td>100</td>
<td>100</td>
<td>0.224</td>
<td>0.193</td>
<td>1.010</td>
<td>0.991</td>
</tr>
<tr>
<td>50%</td>
<td>200</td>
<td>200</td>
<td>0.427</td>
<td>0.406</td>
<td>1.753</td>
<td>1.738</td>
</tr>
<tr>
<td>75%</td>
<td>300</td>
<td>303</td>
<td>0.709</td>
<td>0.654</td>
<td>2.343</td>
<td>2.310</td>
</tr>
<tr>
<td>100%</td>
<td>400</td>
<td>400</td>
<td>1.102</td>
<td>0.967</td>
<td>2.957</td>
<td>2.900</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td>0.227</td>
<td>0.225</td>
<td>0.983</td>
<td>0.962</td>
</tr>
<tr>
<td>125%</td>
<td>500</td>
<td>500</td>
<td>1.392</td>
<td>1.215</td>
<td>2.697</td>
<td>2.596</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td>0.316</td>
<td>0.266</td>
<td>0.473</td>
<td>0.443</td>
</tr>
<tr>
<td>150%</td>
<td>600</td>
<td>600</td>
<td>1.357</td>
<td>1.198</td>
<td>2.762</td>
<td>2.682</td>
</tr>
<tr>
<td>Load Removed</td>
<td></td>
<td></td>
<td>0.196</td>
<td>0.179</td>
<td>0.445</td>
<td>0.426</td>
</tr>
</tbody>
</table>
Figure 3 – ASTM F2531 – Seat – Deflection Measurements

Figure 4 – ASTM F2531 – Seat – Deflection
Summary

- Per ASTM F2126 the submitted product was able to support 2.5 times its rated load capacity (1,000 lbs) without permanent deformation. The factor of safety for the platform is calculated as 2.50.
- Per ASTM F2125 the submitted product showed no signs of permanent deformation nor did it show signs of shifting after the load was removed.
- Per ASTM F2531 the seat of the submitted product were both able to support 1.5 times the rated load capacity (600 lbs) and showed no signs of permanent deformation.
- The instructions supplied with the submitted product comply with the requirements of ASTM F2123.
- The warning labels for the submitted product comply with the requirements of ASTM F2121.

We appreciate the opportunity to provide our services to you on this project. Please do not hesitate to contact us at your convenience if you have any questions about this report or if we may be of further assistance.

Sincerely,

TESTING, ENGINEERING & CONSULTING SERVICES, INC.

James G. McCants III Shawn P. McCormick
Laboratory Manager, Chemist Laboratory Principal

Attachments: Photos 1-8
ASTM F2123 Instruction Checklist
ASTM F2121 Warning Label Checklist
Photo 3 – Platform Static Loading (Side View)

Photo 4 – Platform Static Loading (Front View)

Photo 5 – Stability and Adherence (Side View)

Photo 6 – Stability and Adherence (Front View)
Photo 7 – Seat Loading (Front View)

Photo 8 – Seat Loading (Side View)
Initial Inspection Form - ASTM F2121 - Warning Label for Treestand

1) Instructions included in packaging
2) DVD included in packaging
3) FAS Model Designation
 a) Full Body Harness
 b) Suspension Relief Device
 c) Anchor Strap
4) All parts included in packaging
5) Warning Label Content
 a) "WARNING"
 b) "Failure to follow all warnings could result in serious death or injury"
 c) "Do not use without a Full Body Harness that meets ASTM Standards"
 d) "Do not use before reading instructions"
 e) Load Capacity and Weight Limit
 f) Manufacturer's Name, Address, Phone Number
 g) Any other safety specific information
6) Warning labels attached and placed properly
 a) Location of Warning Label
7) Date of Manufacture

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Affidavit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING

Failure to follow all warnings listed could result in serious injury or death. Do not use this product without Full body Harness (Fall Arrest System) that meets ASTM Standards.

Read Instructions before use.
Model: Hang Around
ASTM Rated Load Capacity: 400 lbs

DO NOT MODIFY THIS PRODUCT.
Proper maintenance and inspection is required

Control # 181000

Manufactured by NARCO Metal Products, 162 Jack Cooper Drive, Valley Head, Alabama 35989

Control # 181000
Start of Review

- All user instructions shall be in English, and included with each unit.
- In addition to model specific written instructions, a Digital Versatile Disc (DVD) or Video Home System (VHS) tape shall provide non-model specific video instructions and safety warnings with each treestand or treestand ladder.

General treestand safety topics/scenes.

- When hunting from a treestand falls can occur any time after leaving the ground causing injury or death.
- Always wear a fall arrest system (FAS) comprising a full body harness at all times after leaving the ground. You must stay connected at all times after leaving the ground while using climbing and hang-on treestands. Single safety belts and chest harnesses are no longer allowed and should never be used. If you are not wearing a full body harness properly attached to the tree that is protecting you from a fall, do not leave the ground.
- Read and understand all of the manufacturer’s Warnings and Instructions and use all safety devices provided by the manufacturer. Contact the manufacturer for any questions. Failure to do so could result in injury or death.
- Never exceed the total weight limit of a treestand.
- Never use a treestand while taking drugs (even prescription drugs) or alcohol.
- Never use a treestand during inclement weather such as rain, lightning, windstorms or icy conditions and end your hunt and return to the ground if inclement conditions arise.
- Never use a treestand when feeling ill, nauseous or dizzy, or if you have a prior medical condition that could cause a problem i.e., heart condition, joints that lock-up, spinal fusions, etc. or if you are not well rested.
- Never use a treestand on a dead, leaning, diseased or loose barked tree or on a utility pole.
- Never rely on a tree branch for support.
- Never jump or bounce on a treestand to seat it to the tree.
- Pull up a bow, backpack, firearm or other equipment only after being secure in the treestand and a firearm must be pulled up with it unloaded, chamber open and muzzle down.
Always inform someone of the hunting location, where the treestand will be located and the expected duration of the hunt.

A signal device such as a mobile phone, radio, whistles, signal flare or personal locator device (PLD) must be on your person and readily available at all times.

Inspect the treestand and all safety devices each time before use and do not store a treestand outdoors when not in use.

Never modify your stand in any way by making repairs, replacing parts, or altering adding or attaching anything to it except if explicitly authorized in writing by the manufacturer.

Practice installing, adjusting and using your treestand at ground level prior to using it at elevated positions.

Instructions (written and video) should be kept in a safe place and reviewed at least annually. It is the responsibility of the treestand owner to furnish the complete instructions to any person that who borrows or purchases the treestand.

Non-climbing (fixed or hang-on) treestand topics/scenes.

The use of a lineman’s/climbing belt is required when installing a hang-on treestand to stabilize the user with the tree.

Correct tightening and adjustments of chains, cables, straps, etc. are critical to stable hang-on treestand installation. All treestand contact points must be in contact with the tree before you step onto your stand.

Practice the attachment of hang-on treestands at ground level before using in a hunting environment.

Never leave a treestand in a tree for more than two weeks since weather or animals could cause damage. Tree growth can also stress and damage straps and buckles.

Use a haul line to raise and lower the treestand. Never climb with anything on your back.

Climbing aids (stick ladders, sectional ladders, steps, etc.) must extend above the platform to allow the user to step down onto the platform. Never step up to your stand from a climbing aid.

Fall Arrest System (FAS) and full body harness topics/scenes.

Read and understand the manufacturer’s Warnings, expiration date and instructions on how to use and how to properly adjust the harness.

Practice the use of a full body harness at ground level in the presence of a responsible adult to experience the feeling of hanging suspended before using in a hunting environment.

The length of the harness tether must be minimized at all times. It should be adjusted so that it is above the head with no slack (snug) in the sitting position and you should have the minimum amount of slack possible when climbing.

Never allow the tether strap to get under your chin or around your neck.

Failure to follow harness instructions could result in not being able to return to the stand and being suspended in a harness after a fall. If the hunting location is unknown by anyone and communication efforts are unsuccessful, you must have a personal plan for recovery/escape because prolonged suspension in a harness can be fatal. It is important to exercise the legs by pushing against the tree or doing other forms of continuous leg exercises to avoid blood pooling while being suspended. Hunters with varying degrees of physical fitness may require different plans to recover/escape the effects of prolonged suspension. Have a personal plan and practice it in the presence of a responsible adult before leaving the ground. No one escape/rescue plan will work for every hunter on every tree in every circumstance. Only you can determine the best recovery/escape plan for your hunting situation and you must have a recovery/escape plan for your situation before leaving the ground.

A suspension relief device must be on your person and readily accessible while using a harness. These devices allow the user to relieve the load on the lower extremities if suspended in a harness.
and help maintain circulation in the legs, mitigate suspension trauma (blood pooling) or allow descent to the ground. Be sure to follow the manufacturers’ directions on the safe use of any suspension relief device.

☑ Several optional products/systems are available that offer self-recovery or self extraction from a fall when suspended in a harness. Some systems automatically descend the user while others allow user control. One of these products/systems could be considered for use as an additional safety precaution against prolonged suspension and suspension trauma. Be sure to follow the manufacturers’ directions on the safe use of these products/systems.

☑ Hunt from the ground when self-recovery/escape ability is absent.

☑ There is time to make a correct decision on what action to take if a fall occurs while wearing a full body harness. It is important to remember, “DO NOT PANIC.” Remain calm and implement your practiced rescue, relief and recovery plan.

Climbing aids for hang-on treestands – stick ladders, sectional ladders, steps, etc.

☑ A full body harness with lineman’s/climbing belt must be worn at all times while installing or removing any hang-on climbing aids.

☑ Hang-on climbing aids must be placed on the tree at a height above the platform where the user can maintain a handhold on the unit and step downwards onto the treestand. Never step up from a climbing device to get into your stand.

☑ When using a climbing/lineman’s belt to ascend the tree, the full body harness should be attached to the tree before stepping down onto the treestand.

☑ Sectional ladders and steps should be spaced on the tree to insure each step is no more than 18 inches apart.

☑ Check every stick ladder section connection every time you use the stick ladder before you leave the ground. If stick ladder sections are separating, do not use the stick ladder.

In addition to the content of Section 7.1, basic instructions shall include, but not be limited to, the following:

☑ The manufacturers name and address.

☑ The unit model identification.

☑ The unit weight limit.

☑ Clear identification of parts or devices mentioned in the instructions.

☑ A clear caution, notification or warning of any particular or special condition of assembly, adjustment, inspection or use of the unit that would not be reasonable and/or obvious to an inexperienced person.

☑ The instructions shall include information on the method of attaching the treestand to the tree. This shall include the use of photographs and/or diagrams to illustrate and further clarify written instructions. Any questions about instructions should be referred to the manufacturer.

☑ The minimum (and maximum where applicable) tree diameter for proper use shall be specified.

☑ A procedure for adjusting the unit to fit a given diameter tree shall be specified. This shall include the use of photographs and/or diagrams to illustrate and further clarify written instructions.

☑ A notation shall be made in this section of the instructions that the user must use a fall protection device, specifically a full body safety harness, and a handclimber or climbing aid while climbing or descending.

☑ Foot placement and foot harness adjustment instructions (where applicable) shall be included within this section.

Instruction shall be given to inform the user of details specific to the unit such as, but not limited to, the following:
For units with integral seats, the method and/or adjustments required to erect the seat (where applicable).

For units with a balance bar, arm rest, gun rest, etc., the method and/or adjustments required to erect same (where applicable)

For non-climbing (hang-on and ladder) treestands, the instructions shall include information about the method to install it to the tree. This shall include the use of photographs and/or diagrams to illustrate and further clarify written instructions.

The use of a lineman’s/climbing belt shall be presented as a means for stabilizing the user during ascent, descent and the installation of a hang-on treestand.

Instructions shall include information on the proper care and maintenance of the unit. Information shall include, but not be limited to the following:

- Notice shall be given that inspection for defects from damage, rot, corrosion, cracks, freezing, excessive heat, etc. before every use is required and not to use if damage is detected or suspected.

- Minor maintenance that the manufacturer deems reasonably appropriate for users should be recommended. Examples include, but are not limited to: re-tightening or replacement of hardware (specified and supplied by the manufacturer), replacement of rope, straps, cords, etc. (specified and supplied by the manufacturer), preserving or refinishing wood, touch-up painting, lubrication, etc.

- Storage and/or any conditions the unit should not be subjected to.

Additional Content

It is recommended that additional instructions be given as follows:

- Information on the method of securing applicable attachments.

- Information (not given above) about applicable user adjustments.

- Aids or helpful hints that are not obvious to the inexperienced user.

Conclusion of Review