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Figure 1: A stormy ocean synthesized with our model and rendered interactively in OpenGL.

Abstract

In this paper, we describe the practical application of several
empirically-based, directional ocean wave spectra for use in the
Fourier synthesis of animated ocean height fields. We use the
Texel MARSEN ARSLOE (TMA) empirical model for the non-
directional component of the wave spectrum, and compare a se-
lection of empirically-based directional spreading functions. Addi-
tionally, we introduce a novel, normalized parameter called “swell”
which modifies the directional spreading to produce wavelength-
dependent elongation of waves into parallel wave trains.

This paper builds upon the spectral ocean synthesis techniques pop-
ularized for computer graphics in Jerry Tessendorf’s popular SIG-
GRAPH Course, “Simulating Ocean Water” and the accompanying
course notes. The advancement of our spectra over the spectrum
described by Tessendorf is that it readily gives plausible, attractive
results for a wide range of wind speeds, ocean depths, and other
physical parameters, without requiring artists to manually adjust
gain and filter parameters to compensate for model inaccuracies.
Our “swell” parameter additionally provides an intuitive interface
for smoothly varying between choppy seas due to local storms and
swells from distant weather events.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;
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1 Introduction

In his 2001-2004 SIGGRAPH Course, “Simulating Ocean Water”,
[Tessendorf 2001], Jerry Tessendorf described a methodology for
the random generating of time-varying ocean height fields. The
technique begins by using a wave spectral density function (wave
spectrum) and a gaussian pseudo-random number generator to cre-
ate an initial state representation in 2D spectral space.

This initial spectral state is propagated forward in time using a re-
lationship between wavelength and wave travel speed (phase ve-
locity) called the dispersion relationship. Finally, the Inverse Fast
Fourier Transform is used to convert this propagated spectral repre-
sentation into 2D height fields, horizontal displacement maps, and
crest maps.

This methodology produces beautiful ocean surfaces and is so
widely used that these waves are commonly known simply as,
“Tessendorf Waves”. The model is supported in a wide vari-
ety of commercial and proprietary ocean simulation toolkits, in-
cluding the popular open source aaOcean Suite, which provides
plugins for Softimage, Maya, Houdini, Mental Ray, and Arnold.
[Akram 2015]. Tessendorf Waves have even been made into fine



dinner-ware: http://www.allenhemberger.com/alinea/2013/05/

tessendorf-plate/

Challenges of the Tessendorf Model in Practice

Due to the ubiquity of Tessendorf Waves, water simulation visual
effects artists have a great deal of experience in shaping the model
to achieve realistic ocean scenes, and over time have identified chal-
lenging aspects. While it is true that different implementations of
the model have presented tools for lessening these difficulties, they
are largely informal and unpublished. Therefore, in this paper we
restrict our analysis and improvements to the model as originally
published. Here is a list of some of the primary difficulties:

� Amplitude Tuning: The amplitude gain of the model is not
explicitly provided. It has to be set visually, and tends to need
different settings for different ocean categories, such as calm
seas vs. raging storms. While it is true that an implementa-
tion can normalize the model to a good initial value, this is
nonetheless an area that involves frequent parameter tuning.

� Spectrum Accuracy: Plainly speaking, it is challenging to
create an aesthetically pleasing ocean surface with the model
without combining several wave fields and without the use of
filters. Less subjectively, the directional and non-directional
spectra used in the model are a poor empirical fit to observed
ocean behavior. [Ochi 1998]. The model tends to produce
waves evenly across the range of wavelengths, whereas visual
references show a more pronounced concentration of wave
energy in peak wavelengths, increasingly so as sea severity in-
creases. The excessive middle-wavelength energy often leads
artists to use band-pass filters to isolate desired wavelengths,
and to combine multiple wave fields to sculpt a desired look.
The parameter-tuning of such filters is difficult, involving usu-
ally at least three parameters per filter, and when multiple
wave fields are combined, each new wave field has a com-
pletely independent set of parameters. This can quickly lead
to confusion as effects from one set of waves interfere with
those from another set.

� Shallow Water: The model doesn’t adjust wave amplitudes
to account for shallow ocean depths. While this can be par-
tially ameliorated by lowering the amplitude gain manually,
doing so dampens all wavelengths equally, whereas the ef-
fects of shallow water should be more pronounced on larger
waves.

� Directional Spreading: The directional spreading model is
a fixed, unparameterized falloff that is the same for all wave-
lengths. Without modification, it is impossible to create long
swells, and even with modification, the distribution of perpen-
dicular waves is difficult to get exactly correct.

In this paper, we address these areas of difficulty by demonstrating
the practical application of the Texel MARSEN ARSLOE (TMA)
non-directional wave spectrum and a selection of empirically-based
directional spreading functions including the Mitsuyasu and Has-
selmann models. The TMA model is easy for artists to use, and
dramatically cuts down on the amount of tuning and expertise re-
quired to achieve a plausible ocean that matches a reference. The
TMA model is empirical, essentially a high-order curve fit to an ex-
tremely large set of measured ocean height, wind-speed, fetch, and
ocean-depth data. [Hughes 1984; Ochi 1998]

For the directional component of the spectrum, we evaluate several
different empirically-based directional spreading functions, each of
which has no user-tunable parameters. We compare these to the
cos2 spreading function used by [Tessendorf 2001]. These models

are based around seas affected by local wind events, and are there-
fore fairly choppy.

We propose a novel, normalized parameter named “swell”, with a
useful range of [0; 1], which allows an artist to smoothly transi-
tion from a base wave field with empirical directional spreading to
a strongly elongated train of directed, parallel waves. The swell
parameter is used to directly modify the directional spreading func-
tions, and can be used with any of the models.

2 Previous Work

The stochastic approach to the study of ocean waves began in the
1950’s, when the first wave spectrum models were proposed such
as those in [Pierson et al. 1954]. The wave spectrum equilib-
rium range was first described by [Phillips 1958], and developed
into the Pierson-Moskowitz spectrum in [Pierson and Moskowitz
1964]. The JONSWAP spectrum we use in this paper was de-
veloped by [Hasselmann et al. 1973]. Using the work of [Kitaig-
orodskii et al. 1975], [Bouws 1985a] created the Texel MARSEN
ARSLOE (TMA) spectrum, which was again elaborately studied
by [Hughes 1984]. The directional spreading functions we exam-
ine were developed by [Longuet-Higgins et al. 1961], [Mitsuyasu
1975], [Hasselmann et al. 1973], and [Donelan et al. 1985], all
based on parameter and model fitting to different ocean wave data
sets.

A vast number of research papers and books on the stochastic study
of oceans have been, and continue to be published. The topic
has great impact on the design and engineering of marine systems.
[Ochi 1998] is the book that the majority of the physical oceanog-
raphy references in this paper began with, and provides an excellent
and thorough overview of the subject. We also referred to [Young
1999] for elaboration on fetch and a very in-depth discussion of
directional spreading functions. [Stewart 2008] provides a more
introductory approach to physical oceanography, and was useful
in helping develop an intuitive understanding of the core concepts,
particularly the formulation of the spectrum from the Fourier trans-
form. [Wen et al. 1993] provide a different theoretical derivation of
a physical directional spreading function, though we eschew their
formulation due to its complexity.

Within the realm of computer graphics, there have been many con-
tributions to the creation of ocean wave height fields. [Fournier and
Reeves 1986] showed how to combine Gerstner Waves as deforma-
tions of patch vertices to produce very realistic breaking waves for
that time. [Kass and Miller 1990] demonstrated the solution of the
shallow water equations on a 2D height field to generate shallow
water waves that are capable of interaction with objects over time.
[Tessendorf 2001]’s SIGGRAPH Courses introduced the physical
oceanographic approach to synthesized FFT waves, and is the pri-
mary work this paper is based upon. Though not related to oceans
specifically, the FFT fluid solver presented by [Stam 2002] pro-
vided a concise, working solver using the FFT, and became a start-
ing point for many implementations of FFT-based 2D solvers.

Full 3D solutions to the Navier Stokes equations began to be in-
troduced to computer graphics by [Foster and Metaxas 1996], and
have been aggressively improved upon since then. Despite signifi-
cant advancements, though, full 3D solutions for deep oceans still
use height fields as a base layer, or as a boundary condition, or
as a guide shape. [Nielsen and Bridson 2011]. In [Nielsen et al.
2013], the authors create a system capable of inverting an existing
height field into the best fit parameters to the ocean model from
[Tessendorf 2001]. Their method is specific to that model, though
we hope this paper will encourage an adaptation to a new set of
parameters.

http://www.allenhemberger.com/alinea/2013/05/tessendorf-plate/
http://www.allenhemberger.com/alinea/2013/05/tessendorf-plate/


The FFT, or Fast Fourier Transform, was originally desribed by
[Cooley and Tukey 1965], though the method actually dates back
to Gauss. Many current implementations of FFT ocean solvers rely
on the FFTW (Fastest Fourier Transform in the West) library from
MIT. The implementation of FFTW3 is described by its authors in
[Frigo and Johnson 2005].

Lastly, a presentation of the TMA spectrum appeared in [Lee et al.
2008], with a directional spreading function that is similar to the
Mitsuyasu model we present in this paper.

3 Nomenclature and Basic Relationships

Symbol Meaning
λ Wavelength
T Period
ω Angular Frequency
f Ordinary Frequency
θ Angle of wave relative to wind direction

S(ω, θ) Wave spectrum
S(ω) Non-directional Wave Spectrum
D(θ) Directional Spreading Function
k Wave number vector, or Wave vector
kx X component of Wave vector
ky Y component of Wave vector
k Magnitude of wave vector

ω = φ(k) Dispersion Relationship
E Time average of wave energy
ρ Density of water = 1000
σ Surface Tension coefficient = 0.074
g Gravitational constant = 9.81
h Ocean depth
U Average wind speed
F Fetch
a Wave amplitude
t Time
ξ Swell

Table 1: Nomenclature and Symbols

The spectra presented in this paper rely on a large number of phys-
ical parameters and different variables. Table 1 lists the symbols
we use along with their meanings. The definition of some of these
physical properties in terms of each other are given by the following
definitive equations:

! =
2�

T
(1)

! = 2�f (2)
k = (kx; ky) (3)

k =

q
kx

2 + ky
2 (4)

k =
2�

�
(5)

� = arctan
ky
kx

(6)

4 Wave Dispersion

In order to discuss the wave spectra in detail, we must first present a
functional relationship between the travel speed of waves and their
wavelengths. This relationship is called the dispersion relationship,
and is written as a function relating angular frequency ! to the wave
number k. The dispersion relationships depend on gravity, ocean
depth, and other physical parameters.

A simple discussion and derivation of dispersion relationships is
given in [Read 2009]. For deep water, in which the ocean depth is
vastly larger than considered wavelengths, the dispersion relation-
ship is derived as:

!2 = gk (7)

A finite-depth dispersion relationship is:

!2 = gk tanh kh (8)

Where h represents the ocean depth.

We can include a term which will only influence the relation-
ship when waves have very small wavelengths, to simulate capil-
lary wave dispersion. Capillary waves are small waves, typically
with wavelengths less than a few centimeters, whose dynamics are
primarily governed by surface tension. A dispersion relationship
which incorporates the effects of surface tension at small scales as
well as the full effects of gravity and ocean depth is:

!2 = (gk +
χ

π
k3) tanh kh (9)

where χ represents the surface tension coefficient in units of N/m,
and π represents the density in kg=m3. These relationships are all
approximations, and there is a large set of different relationships
to choose from. See the Wikipedia entry https://en.wikipedia.

org/wiki/Dispersion_(water_waves) for many more.

The capillary formulation given in (9) is nearly identical to the finite
depth formulation given in (8) for waves with large wavelengths,
for which the �

�
k3 term approaches zero. Similarly, the finite depth

formulation is nearly identical to the deep water formulation in (7)
for large wavelengths when tanh kh approaches unity. Therefore,
we always use the capillary formulation in our implementation. For
mathematical analysis, though, we may resort to either the Deep
or Finite Depth representations as the need for simplification de-
mands.

5 The Wave Spectrum

The wave spectral density function, or wave spectrum, is a func-
tion which expresses the time-average energy of a random ocean
configuration as a continuous function of angular frequency ! and
direction �. Spectral analysis of a height field represents the field
as an infinite sum of discrete 2d cosine waves.

A single 2D wave in an XYZ cartesian coordinate system, with Z
up, can be described by the following equation:

�i(x; y; t) = ai cos
h
ki(cos �i + sin �i)� !it+ �i

i
(10)

where a is an amplitude, ! is the angular frequency of the wave, k
is the wavenumber, � is the direction of the wave counterclockwise
from the positive x-axis, t is time, and � is the phase offset. Using
vector notation,

r = (x; y)

ki = (ki cos �; ki sin �)

= (kxi; kyi)

�i(r; t) = ai cos(ki:r� !it+ �i) (11)

Because ! and � are both functions of k, a single wave is character-
ized entirely by the numbers (ki; ai; �i). The entire ocean surface
is then just a sum of infinitely many of these 2D waves:

�(r; t) =

1X
i=0

ai cos(ki:r� !it+ �i) (12)

https://en.wikipedia.org/wiki/Dispersion_(water_waves)
https://en.wikipedia.org/wiki/Dispersion_(water_waves)


For each of the infinitely many discrete waves �i, there is an
infinitesimally small interval of the spectral domain defined as
[!i; !i + �!i]; [�i; �i + ��i], and the amplitude contribution ai
is also infinitesimally small. We can formally define the wave spec-
trum now in a useful form that will allow us to relate the spectrum
to amplitudes in spectral space:X

�!i

X
��i

ai
2

2
=

Z �

��

Z 1
0

S(!; �)d!d� (13)

We can write equation (13) over only the ith interval as:

ai
2

2
=

Z �i+��i

�i

Z !i+�!i

!i

S(!; �)d!d� (14)

which can be discretely approximated:

ai
2

2
� S(!i; �i)�!i��i (15)

Each distinct random ocean surface has one and only one spectrum
associated with it, and just as each surface is unique, each spectrum
is unique. The different spectral models we discuss below in detail
are intended to represent the average over a very large number of
unique random oceans with the same physical characteristics.

The directional wave spectrum S(!; �) is written as the product of a
non-directional spectrum S(!) and a directional spreading function
D(!; �):

S(!; �) = S(!)D(!; �) (16)

We present independent models for each component, starting with
the non-directional spectra.

5.1 Non-Directional Wave Spectra

[Phillips 1958] introduced the notion of a “fully developed ocean”,
in which wind blew over a very large region of the ocean, signif-
icantly larger than the wavelengths being considered, for a long
enough time that the waves reach equilibrium with the wind. In
such an equilibrium state, no additional energy is transferred from
the wind to the waves, and the ocean is “fully developed”. This is
intuitively analogous to pushing a swing at the same speed that it is
already moving. From [Hughes 1984]:

Phillips suggested that there should be a region of the
wind-generated deepwater gravity waves in which the
wave energy density has an upper bound given by the
following expression:

EPhillips(!) = �2�
g2

!5
(17)

5.1.1 The Pierson-Moskowitz Spectrum

[Pierson and Moskowitz 1964] used data gathered from British
weather ships in the North Atlantic to empirically determine co-
efficients for a spectrum function based on the Phillips equilibrium
range. [Stewart 2008; Ochi 1998; Pierson and Moskowitz 1964]
The spectrum they developed for representing fully-developed seas
is:

SPiersonMoskowitz(!) =
�g2

!5
exp(��(

!0

!
)4) (18)

� = 8:1x10�3

� = 0:74

!0 = g=(1:026U)

The peak frequency, !p, is the angular frequency for which the
waves have the most average energy, and for this spectrum is calcu-
lated as:

!p = 0:855g=U (19)

5.1.2 The Generalized A,B Spectrum

[Ochi 1998] lists a number of wave spectra that have the same form
as Pierson-Moskowitz, differing only in their constant coefficients.

SA;B(!) =
A

!5
exp(

�B
!4

) (20)

The Pierson-Moskowitz Spectrum can be described as an A,B Spec-
trum with A = �g2 and B = �!0

4 = 0:6858(g=U)4.

5.1.3 The Tessendorf Spectrum

The full directional spectrum used in [Tessendorf 2001] is de-
scribed as a wave number spectrum S(k):

STessendorf(k) = AT
exp(�g

2

U4 =k
2)

k4
D(k) (21)

Where AT is a user-provided scaling factor. To convert this into
the S(!; �) form that we use for the other spectra in this paper,
we’ll work backwards from the A,B Spectrum. Using the simple
deep water dispersion relationship ! =

p
gk, we can substitute

the wave number spectrum formulation from equation (61) derived
in the appendix, into the A,B Spectrum from equation (20), using
the full directional form from equation (16). Starting with equation
(61) with (16) substituted:

S(k) = S(!)D(!; �)
@!

@k
=k

and the dispersion relationship with its derivative:

! =
p
gk (22)

@!

@k
=

g

2
p
gk

(23)

then substituting the A,B Spectrum from equation (20), and simply
writing the directional component as D

S(k) =
Aab

(gk)5=2
exp(

�Bab
(gk)2

)(
g

2
p
gk
=k)D (24)

Combining terms, we get:

S(k) = (
Aab
2g2

)
exp(�Bab

g2
=k2)

k4
D (25)

This is exactly the form of the Tessendorf Spectrum given in (21),
so we can say that the non-directional part of the Tessendorf Spec-
trum is an A,B Spectrum with coefficients:

Aab = 2AT g
2 (26)

Bab = (g=U)4 (27)

Given that AT is unspecified, the Tessendorf Spectrum is nearly
identical to the Pierson-Moskowitz spectrum, differing only in a
multiplier of 0:6858 on the coefficient B, or alternatively, a 1:0989
multiplier on the wind speed U . [Ochi 1998] describes the relation-
ship of wind speeds measured at different height z above the water



level in terms of the wind speed U10 at 10 meters above the water
level as follows:

Uz = U10 + u? ln(z=10)

u? =
p
C10U10

C10 = (0:8 + 0:065U10)x10�5

Rearranging terms, we can write the relationship between Uz and
U10 as a multiplier:

Uz
U10

= 1 +
p
C10 ln(z=10)

This overlooks the dependence of the C10 term on U10, but
the larger point remains that the ultimate difference between
the Tessendorf Spectrum and the Pierson-Moskowitz Spectrum
amounts to essentially a very minor variation in the measured aver-
age wind speed, which could be accounted for a difference in mea-
surement height. The research bears this out, given that [Phillips
1958] uses wind speed at 10 meters, but [Pierson and Moskowitz
1964] uses wind speed measured at 19.5 meters. Another pos-
sible interpretation for the slight coefficient difference is that we
used the deep water dispersion relationship (7) rather than the fi-
nite depth dispersion relationship (8). We can therefore assert that
the Tessendorf Spectrum is essentially identical to the Pierson-
Moskowitz Spectrum. In our implementation, we use the A,B Spec-
trum for both cases to allow for comparison, but there is essentially
no visible difference between the two.

Tessendorf advises that his spectrum by itself has “poor conver-
gence properties for high values of k”, and advises damping out
small scale waves and multiplying the final spectrum by the factor
exp(�k2l2), for a user-provided small wavelength l � L. This
bears some resemblence to the peak amplification features of the
JONSWAP Spectrum, which is empirically based and not bound to
a tuning parameter l.

5.1.4 The JONSWAP Spectrum

Based on analysis of data collected as part of the Joint North Sea
Wave Observation Project (JONSWAP), [Hasselmann et al. 1973]
found that the oceans never reach a fully-developed state. Non-
linear interactions between waves, breaking of large wave crests,
directional diffusion of wave energy, and turbulence in the wind
itself all contribute to the continued development of waves. As de-
scribed in [Stewart 2008],

Hence an extra and somewhat artificial factor was added
to the Pierson-Moskowitz spectrum in order to improve
the fit to their measurements. The JONSWAP spectrum
is thus a Pierson-Moskowitz spectrum multiplied by an
extra peak enhancement factor 
r

The JONSWAP spectrum is formulated as follows:

SJONSWAP(!) =
�g2

!5
exp(�5

4
(
!p
!

)4)
4 (28)

r = exp� (! � !p)2

2χ2!p2

� = 0:076(
U2

Fg
)0:22

!p = 22(
g2

UF
)


 = 3:3

χ =

(
0:07 ! � !p
0:09 ! > !p

Where F is the fetch, which is the length of the area over which
the wind is acting on the water, formally defined as “the distance
from a lee shore”. The fetch term can be intuitively understood as
the abstract size of the wind event over distance and time that is
producing the waves. [Young 1999] presents an extremely detailed
look at the measurement, geometry, and effects of fetch on wave
spectra.

The JONSWAP Spectrum is similar to the Pierson Moskowitz spec-
trum, but waves continue to grow as distance and time grow (fetch),
with a much more pronounced peak. Aesthetically, this means that
the primary waves are strongly visible, with other wavelengths rel-
atively damped out. This produces a much better visual match to
photographs of ocean states.

5.1.5 The Texel MARSEN ARSLOE (TMA) Spectrum

The JONSWAP Spectrum was fit to observations of waves in deep
water. [Kitaigorodskii et al. 1975] studied how deep water spec-
tra could be adapted to match field observations for shallow water
equilibrium ranges [Hughes 1984]. They developed a frequency-
dependent function of ocean depth which can be applied as a multi-
plier to a deep water spectrum. This is known as the Kitaigorodskii
Depth Attenuation Function, and takes the form:

�(!h) =

"
(k(!; h))�3 @k(!;h)

@!

(k(!;1))�3 @k(!1)
@!

#
(29)

Where !h is a dimensionless frequency defined by !
p
h=g. This is

an intimidating function at first glance, but when plotted as a func-
tion of !h, as seen in Figure 2, we see that the function takes a very
simple shape that we can easily approximate. An approximation for

Figure 2: �(!; h) as a function of !h
[Hughes 1984]

�(!; h) given in [Thompson and Vincent 1983] is:

�(!; h) �

(
1
2
!h

2 if !h � 1

1� 1
2
(2� !h)2 if !h > 1

This approximation has less than 4% error over the plotted domain
[Hughes 1984]. A smoothstep function from 0 to 2.2 or a stretched
and translated tanh function will also work.

We quote [Hughes 1984] directly in describing the extent of effort
taken to produce the TMA spectral parameterization:

[Bouws 1985a] used field data from three separate stud-
ies on shallow-water wind wave growth to investigate
the parameters used in the TMA spectral representation.
MARSEN (the Marine Remote Sensing Experiment at



the North Sea) and ARSLOE (the Atlantic Remote Sens-
ing Land-Ocean Experiment) were both comprehensive
experiments in which ocean wave measurements were
but a part of the entire program. The experimental sites
are both on the continental shelf with depths up to 40 m;
but the ARSLOE site was open to the Atlantic Ocean,
while the MARSEN site was located in the southern half
of the North Sea. The Texel data set is comprised of a se-
ries of measurements made near the Texel lightship west
of Rotterdam during a longlasting northwesterly storm
in the central and southern North Sea.

The combined data represent conditions with wind-
speeds ranging between 4 and 25 m/sec, bottom mate-
rials ranging from fine to coarse sands, bottom slopes
ranging from 1:150 to nearly flat, and depths from about
5m to 45m.

[Bouws 1985a] fitted the TMA spectral form to over
2,800 wind sea spectra to test its viability and to de-
termine if any parametric relationships could be estab-
lished linking the spectral parameters to the external
wind field. In general the fit of the spectrum was of
the same quality as the fit of the JONSWAP spectrum
to deapwater wind sea spectra.

Wonderfully, for all the detail and care taken, the final form of the
spectrum is just the product of the JONSWAP spectrum and the
Kitaigorodskii Depth Attenuation function:

STMA(ω) = SJONSWAP(ω)Φ(ω, h) (30)

The incorporation of depth damping alleviates a significant chal-
lenge for artists working to create plausible oceans in an environ-
ment. Figure 3 shows a somewhat blustery sea state with an ocean
depth of 15 meters, for each of the Pierson-Moskowitz, JONSWAP
and TMA Spectra. The TMA’s waves are damped down and reveal
more detail, believably existing in a semi-shallow body of water,
whereas the other two look cartoonishly exaggerated.

Figure 3 also illustrates the ease of use of the TMA spectrum in a
shallow scene of 15m depth. In this example, the wind speed and
ocean depth were set once, and then a camera angle was chosen.
If we were using either of the other spectra, we’d have to begin
adjusting magnitude gains to get something realistic looking. With
TMA the results are believable immediately, in a way that matches
the parameters.

6 Directional Spreading

The study of how wave energy disperses directionally, relative to
the primary wind direction, is extremely elaborate. From a theo-
retical perspective, the amount of spreading is a function of energy
concentration in a given wavelength, which is related to the notion
of the sea’s development, and is therefore a function of the primary
wind speed, the fetch, and the spectrum. Furthermore, there is a
distinction between the directional spreading of the locally affected
Sea versus the directional spreading of the Swell, which is wave
energy that travels into an area from excitation by wind or storm
elsewhere. [Ochi 1998].

The Directional Spreading function is written D(ω, θ). It multi-
plies the non-directional spectrum function S(ω) to produce the
directional spectrum S(ω, θ), as shown in equation (16). Any form
of D(ω, θ) must satisfy the condition:∫π

−π
D(ω, θ)dθ= 1 (31)

Figure 3: Shallow oceans shown for a 250m patch with 25m/s wind
speed, 15m ocean depth, and three different spectra. From top to
bottom, the Pierson-Moskowitz, JONSWAP, and TMA Spectra.

6.0.6 Positive Cosine Squared Directional Spreading

[Tessendorf 2001] uses the square of the cosine of θ, which treats
waves moving opposite the wind the same as waves moving with
the wind. [Ochi 1998] describes the same function but truncated to
only the portion of the domain for which the cosine is positive. We
call this the Positive Cosine Squared directional spreading function.
It does not depend on ω, so it causes all wavelengths to be elongated
equally for a given θ.

Dcos2(θ) =

{
2
π

cos2(θ) if −π
2
< θ< π

2

0 otherwise
(32)

This function produces strongly directional waves that all have the
same elongation shape. It does not match empirical data, and does
not always look right aesthetically, which movitates a need for more
robust, empirical models. [Young 1999] provides a detailed discus-
sion of directional spreading, and provides three different models
for comparison, which we refer to by their author references: Mit-
suyasu, Hasselmann, and Donelan-Banner.

6.0.7 Mitsuyasu Directional Spreading

[Mitsuyasu 1975] fit a directional data set captured with a cloverleaf
buoy to a function with a single shaping parameter, s, of a form
described in [Longuet-Higgins et al. 1961]:

D(ω, θ) = Q(s)| cos(θ/2) | 2s (33)

whereQ(s) is a normalization factor to satisfy the condition in (31).
[Ochi 1998] provides a closed-form approximate solution for Q(s)



expressed in terms of the Euler gamma function:

Q(s) =
22s�1

�

�(s+ 1)2

�(2s+ 1)
(34)

The parameter s is fit to the data as follows:

s =

(
sp(!=!p)

5 ! � !p
sp(!=!p)

�2:5 ! > !p
(35)

where !p is the peak angular frequency for the non-directional
spectrum, and sp is calculated from !p and physical parameters
as follows:

sp = 11:5(!pU=g)�2:5 (36)

6.0.8 Hasselmann Directional Spreading

[Hasselmann et al. 1973] fit the JONSWAP data set to produce a
directional spreading function that also uses the [Longuet-Higgins
et al. 1961] form in Equation (33), but with s computed differently:

s =

(
6:97(!=!p)

4:06 ! � !p
9:77(!=!p)

�2:33�1:45((U!p=g)�1:17) ! > !p
(37)

6.0.9 Donelan-Banner Directional Spreading

As referenced in [Young 1999], [Donelan et al. 1985] performed
an analysis over a larger set of directional wave data and found
the Mitsuyasu/Hasselmann forms inadequate. They proposed an
alternative form:

D(!; �) =
�s

2 tanh(�s�)
sech(�s�)

2 (38)

The parameter fit for �s is elaborate, with the section for !=!p >
1:6 being a modification added by Banner [Young 1999].

�s =

8><>:
2:61(!=!p)

1:3 for 0:56 < !=!p < 0:95

2:28(!=!p)
�1:3 for 0:95 � !=!p < 1:6

10� !=!p � 1:6

� = �0:4 + 0:8393 exp[�0:567 ln((!=!p)
2)]

In our implementation, we use the first case for !=!p < 0:95,
because when we truncate at 0:56 as suggested above, it doesn’t
have as pleasing of an appearance.

6.0.10 Flat and Mixed Directional Spreading

It is sometimes useful, for aesthetic reasons, to remove directional-
ity entirely. A completely flat directional spreading function, with
no shaping at all is simply:

Dflat(!; �) =
1

2�
(39)

Any two directional spreading functions that meet the constraint
in equation (31) can be linearly interpolated to produce a mixed
directional spreading function, as follows:

Dmixed(!; �) = (1� ν)DA(!; �) + νDB(!; �) (40)

for some mixing parameter 0 � ν � 1.

6.1 The Swell Parameter

The wave spectra described thus far relate to waves generated by
a local source of wind, and the resulting shape of the directional
spreading tends to be somewhat choppy, for each of the empirical
spreading models described in section 6. It’s common for artists
to need to create more elongated, parallel waves in certain circum-
stances. The physical justification for these waves is described by
[Ochi 1998] in the following passage:

. . . the source of irregularity in waves observed in a sea
is usually the local wind. Sometimes, however, another
wave system, called swell, runs across or mixes with
wind-generated local waves. Swell is defined as waves
which have traveled out of their generating area. Dur-
ing the course of traveling, shorter waves are overtaken
by larger waves resulting in a train of more regular long
waves moving in its own direction. Fairly large waves
observed at sea with minor or even no wind may be cat-
egorized as swell.

When swell mixes with the local wind-generated waves,
it is not easily identified in the wave record; however, it
can be clearly identified in the wave spectrum.

In comparing two actual data sets, one with swell and one without,
we can see the presence of the swell as a distinct ocean pattern on
top of the base ocean pattern, as seen in Figure 4. We can add the

Figure 4: On top, a wave spectrum in severe seas, showing a sin-
gle pronounced peak. On bottom, a mixed sea and swell spectrum
showing two distinct peaks.

[Ochi 1998]

results of two random spectral initial states together to produce a
compound spectrum, which will handle the separation of the sea
and swell without trying to create a confusing dual parameteriza-
tion. This can be done within the spectral field synthesis directly,



or as a post-effect on the spatial displacement fields produced by
the Inverse FFT. In our formulations here, we’ve been implicitly
assuming that the primary wind direction along the x-axis, that is:
θ0 = 0. It’s trivial to add a wind direction bias by simply writing:

θ= arctan(
ky
kx

)− θ0 (41)

We therefore focus our efforts on creating a function of a single
“swell” parameter which will control elongation, denoted by the
symbol ξ. The parameter should be normalized to the range [0,
1] for the predominant useful range of its effects, and designed
such that it feels perceptually linear to a user - meaning that small
changes at any part of the domain produce approximately the same
visual change.

For the directional spreading functions “out of the box”, the waves
are concentrated along the wind direction in differing degrees, but
always with the peak frequency being the most elongated, except
for the cosine squared spreading function, for which all frequencies
are equally elongated.

To simulate the effects of swell from a distant wind event, we
want to design a function Dξ(ω, θ) which elongates waves increas-
ingly as their wavelengths increase, but asymptotically approaches
a maximum elongation. This is in keeping with the description of
swell from [Ochi 1998] and also visual references.

The final directional spreading function is defined as:

Dfinal(ω, θ) = Qfinal(ω)Dbase(ω, θ)Dξ(ω, θ) (42)

Qfinal(ω) = 1/

[∫π

−π
Dbase(ω, θ)Dξ(ω, θ)dθ

]
(43)

We use the Longuet-Higgins form from equation (33) as the basis
for Dξ, but compute the sξ shaping parameter differently. The hy-
perbolic tangent function satisfies the property that shaping (elon-
gation) asymptotically increases. The squaring of the parameter ξ
produces a perceptual linearization of the parameter. Thus, Dξ and
sξ are defined as follows:

Dξ(ω, θ) = Qξ(sξ)| cos(θ/2) | 2sξ (44)

sξ = 16 tanh(
ωp
ω

)ξ2 (45)

where 16 is an entirely subjective tuning parameter we selected so
that when ξ = 1, the elongation of the waves has reached an ex-
treme but still plausible appearance. This is inspired by a plot from
[Young 1999] which showed variations of s up to 16, and it repre-
sents the only magic number in our entire system that is not based
on some empirical grounding.

If Dbase(ω, θ)) is either Mitsuyasu or Hasselmann, the product of
the two functions is still a Longuet-Higgins function, with the shape
parameters simply added together. This means the closed-form nor-
malization function in equation (34) can be used. However, for the
other base directional spreading functions, we have to use numeri-
cal integration to produce the denominator, which is computation-
ally expensive. A 2D lookup table can be created as a preprocessing
step to help speed this step up.

Figure 5 demonstrates the effect of the swell parameter on an ocean
with otherwise identical characteristics. For zero swell, the waves
are somewhat facing in the same direction, but with still a lot of
chop. With swell equal to 1, the waves are strongly elongated. The
swell parameter can be set to larger than 1 to elongate the waves
even more.

Figure 5: The same ocean with different swell amounts. From top
to bottom, swell = 0, 1

7 Spectral Synthesis

For the most part, we follow the template provided by [Tessendorf
2001] when constructing our spectral initial state and propagating
to a spatial state at a given time. However, we depart in a few areas
that are important, which we will describe here.

7.1 Initial State

The initial state consists of two 2D arrays of complex numbers,
each of which is (N/2) + 1 in width (in the x dimension) and N
in height, where N represents the width and height of the desired
spatial height field. In our system, we constrain N to be a power of
two, though most FFT software can handle arbitrary sizes. When
iterating in spectral space, the iteration coordinate is over discrete
values of the wave vector k. However, our spectra have all been
written in terms of the variables (ω, θ). To change variables cor-
rectly, the change of variables theorem has to be employed. The
appendix demonstrates the details of this transformation, giving us
equation (61), repeated here:

S(kx, ky) = S(ω, θ)
dω

dk
/k

The relationship between wave amplitude and the wave spectrum
was described in equation (15), which can be solved for the mean
amplitude:

ā(kx, ky,∆kx∆ky) =
√

2S(kx, ky)∆kx∆ky (46)

Ocean waves in deep water are a Gaussian random process [Ochi
1998], and therefore we use a normal distribution of mean 0 and
standard deviation 1 to produce a random variate ν(kx,ky) for am-
plitude, which is then multiplied by ā to produce the random am-
plitude for wave vector k:

a(kx, ky,∆kx∆ky) = ν(kx,ky)

√
2S(kx, ky)∆kx∆ky (47)



The random value a2/2 has a χ2 distribution with 1 degree of
freedom, which correctly produces a mean spectrum value of
S(kx, ky)∆kx∆ky .

7.1.1 Random Seeding

It is common for artists to want to raise and lower the resolution of
a height field and get the same ocean appearance up to the limits of
the resolution. In order to create repeatability, we create pseudoran-
dom numbers by seeding a random number generator with a hash
of the wave number truncated to five digits of precision, to prevent
numerical imprecision from changing the seeding.

7.1.2 Phase and Bi-Directional Waves

We use a uniform random variate distributed between [0, 2π ],
seeded as above, to produce the phase of the initial state.
[Tessendorf 2001] uses a single complex variate, and then uses the
complex conjugate of that variate to produce waves towards and
against the wave direction when propagating. This is problematic,
because the waves corresponding to the negative direction, repre-
sented by wave number −k = (−kx,−ky) have a different spec-
trum value associated with them, and need to be handled separately.
We therefore store a separate complex variate for the positive and
negative waves in two separate 2D complex spectral arrays in the
initial state. The negative variate is used instead of the complex
conjugate when producing the time-propagated spectral state, but
otherwise we follow [Tessendorf 2001].

8 Implementation

The models described in this paper are implemented in the Tweak
Waves library, the source code for which is included with this pa-
per. An OpenGL-based viewer allows for interactive exploration
of the models with plausible lighting and shading, and allows us to
validate our ease of use claims. We’ve found that ocean shaping
done without a reasonably water-like shading approach will cause
artists to over-sharpen their wave surfaces to compensate for per-
ceived rounding due to the lack of the sharp fresnel effect from the
water shading.

Each of the spectra and directional spreading functions is imple-
mented in C++, and the initialization of the random spectral ini-
tial state is multithreaded using the Intel Thread Building Blocks
library. Creation of a propagated state for time t is also multi-
threaded, and finally the inverse FFT is applied to produce the spa-
tial fields H, DX, DY, and E as described in [Tessendorf 2001].
We apply a sharp threshold on the minimum eigenvector field E to
produce a white crest map, which is seen in our example images.
Artists have specifically commented on the utility of the minimum
eigenvector field for the purpose of creating crest emission, blend-
ing in extra detail, and more. For a resolution of 512x512, we can
adjust the ocean settings in real-time with no perceived latency on a
MacBook Pro with a 2.7 GHz Intel Core i7 dual processors, 16 GB
of RAM, and Intel HD Graphics 4000 with 1024 MB of graphics
memory.

9 Results

Our system is easy and fast to use, and artists can match reference
oceans with very little parameter tuning. Usually an artist needs
only to choose the domain size, the wind speed, the ocean depth,
and the swell amount to match a reference or target. Each of these
parameters has a simple, intuitive meaning that requires no training
to explain. The fetch parameter is easy to understand when inter-
acting with extremely severe seas, with very high winds and ocean

Figure 6: Several views of an ocean from our model with wind
speed = 25m/s, depth = 100m, spectrum = TMA, directional =
Donelan-Banner, swell = 0.25, fetch = 800km.

depths. A smaller fetch of 50km will produce scattered, choppy
waves, whereas a very large fetch of 1250km will produce huge,
smooth, concentrated waves. A long-term goal ours has been to
eliminate all of the “fudge factors” from the model implementation,
in order to have confidence in the integrity of the implementation
relative to these very heavily tested and validated empirical mod-
els we’re using. The last piece we were able to get correct was the
change of variables determinant of the Jacobian, which seems obvi-
ous when formally written, but took a long time to understand and
apply correctly. We are proud to say that with the exception of the
non-empirical swell function, which contains a single magic num-
ber, our system is an exact match in every way to the spectra and
spreading functions as published.

An interactive tour of the system routinely elicits joyous responses,
and new users find they can drive the model with almost no ex-
planation at all. Figure 7 shows waves produced by our model to
match a photographic reference from the Wikipedia entry on Sea
State http://en.wikipedia.org/wiki/Sea_state, rendered inter-
actively in our real-time viewer. This match is quite close and aes-
theticlly pleasing, and took only a few minutes to parameter-tune.
No fudge parameters (amplitude, filtering) are used - just physical
constants.

We default the system to always use the Capillary dispersion re-
lationship, the TMA non-directional spectrum, and the Donelan-
Banner directional spreading function. Our system allows the user
to select alternates, but only the directional spreading ever needs to
be modified in practice. The Hasselmann and Mitsuyasu variations
provide interesting and useful aesthetic variation.

10 Conclusions and Future Work

We presented an in-depth adaptation of the TMA wave spectrum,
and a selection of empirically-based directional spreading func-

http://en.wikipedia.org/wiki/Sea_state


Figure 7: An ocean from our model with wind speed = 75m/s, depth
= 150m, spectrum = TMA, directional = Donelan-Banner, swell =
0.35, fetch = 1250km. Shown next to NOAA photographic reference
for severe sea state.

tions. We designed an intuitive, normalized function of a single
parameter, “swell”, which allows for smooth blending between
choppy seas and long parallel wave trains. We showed how this
function can be used to modify any of the other directional spread-
ing functions.

For future work, we’d like to get trough-damping implemented di-
rectly in the model, with a single parameter that uses the peak fre-
quency as a normalization target. We think this would make the
waves even more believable out of the box. Beyond that, the sys-
tem seems to work extremely well - it is our hope that this paper
will encourage use of our model and produce feedback on how it
might be improved.
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Appendix A: Wave Vector Spectrum, Change
of Variables

The wave spectrum S(!; �) is defined in terms of the variables !; �,
but the spectral field we create for the Inverse FFT is discretized in
terms of the wave vector k’s components, kx; ky . Each 2D spec-
tral point evaluates a discrete approximation of the integral of the
spectrum over a region of constant size �kx;�ky . The integral of
the spectrum over a small interval �!;�� in frequency and angle
space is used to calculate the time-average of wave energy for that
small set of waves, as described in equation (13). In order to in-
tegrate with the substituted variables kx; ky , we must employ the
change of variables theorem, which, adapted to this problem space,
states:

Z
!(kx;ky)

Z
�(kx;ky)

S(!(kx; ky); �(kx; ky))d!d� =Z
kx

Z
ky

S(kx; ky)jdet(J!;�)jdkxdky

(48)

Where jdet(J!;�)j represents the absolute value of the determinant
of the Jacobian matrix containing the partial derivatives of !; � with
respect to kx; ky:

jdet(J!;�)j =







@!
@kx

@!
@ky

@�
@kx

@�
@ky






 =

���� @!@kx @�

@ky
� @!

@ky

@�

@kx

���� (49)

Given the magnitude of the wave vector:

k =

q
kx

2 + ky
2 (50)

and the relationship between ! and k given by any dispersion rela-
tion:

! = θ(k) (51)

We can use the chain rule to calculate the partial derivatives, which
are as follows:

@!

@kx
=

dθ(k)

dk

kx
k

(52)

@!

@ky
=

dθ(k)

dk

ky
k

(53)

@�

@kx
= �ky

k2
(54)

@�

@ky
=

kx
k2

(55)

Substituting the above equations into the absolute value of the de-
terminant of the Jacobian from (49), we get:

jdet(J!;�)j =
����dθ(k)

dk
=k

���� (56)

We can therefore express the differential change of variables as:

d!d� =

����dθ(k)

dk
=k

����dkxdky (57)

The discrete approximation is:

�!�� �
����dθ(k)

dk
=k

�����kx�ky (58)

Finally, this can be substituted into the formula for mean amplitude
from equation (15), using the definitions of ! and k from equations
(50) and (51):

�a(kx; ky;�kx;�ky) =

s
2S(!; �)

����dθ(k)

dk
=k

�����kx�ky (59)

In [Ochi 1998], Section 2.1.6 describes the relationship between
the wave frequency spectrum and the wave number spectrum. His
equation 2.8 is for a single directional angle only, and is given as:

S(k) = S(!)
d!

dk
(60)

By the derivation above, we can state that for the full directional
spectrum,

S(kx; ky) = S(!; �)
d!

dk
=k (61)

For the full dispersion relationship given in (9), the derivative with
respect to the wave number k is:

dθ(k)

dk
=
h(�

�
k3 + gk)sech2(hk) + θ(k)2

2θ(k)
(62)
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