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Abstract

Significance

EndoSeal MTA was previously demonstrated to
induce dentinal tubule biomineralization, favorable
cytocompatibility, and superior sealer distribution,
as well as satisfactory biological and physical
properties. The present finding adds to EndoSeal
satisfactory bond strength performance for appli-
cation in endodontic therapy and increases the
overall knowledge about amaterial that has poten-
tial to become a clinical alternative of injectable
bio-tight root canal sealer.
Introduction: The present study aimed to rank the
bond strength to root dentin of a new injectable
pozzolan-based root canal sealer, EndoSeal MTA, as
compared with MTA Fillapex and AH Plus. Methods:
Eighteen dentinal slices (1 � 0.1 mm) were obtained
from the middle third of 6 maxillary incisors previously
selected. Three canal-like holes with 0.8 mm diameter
were drilled perpendicularly on the axial surface of
each slice. Then, a standardized irrigation was applied
for all holes that were subsequently filled with 1 of 3
test root canal sealers. After that, slices were stored in
contact with phosphate-buffered saline solution (pH
7.2) for 7 days at 37�C before the push-out assay. Fried-
man test and Wilcoxon signed rank test with a Bonfer-
roni correction were used to rank the results.
Significance boundary was set at a = 5%. Results:
Friedman test confirmed a significant dissimilarity in
push-out ranks among the tested cements (P < .01).
Wilcoxon signed rank test demonstrated AH Plus had
significant superior resistance to dislodgment compared
with Endo Seal (P < .01) or MTA Fillapex (P < .01),
whereas MTA Fillapex presented the lowest push-out
values as compared with Endo Seal (P < .01) or AH
Plus (P < .01). Conclusions: EndoSeal presents satisfac-
tory bond strength performance for application in end-
odontic therapy compared with MTA Fillapex, and
although it displays a new alternative of injectable
bio-tight root canal sealer, it is not able to improve adhe-
sion compared with AH Plus. (J Endod 2016;42:1656–
1659)
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Mineral trioxide aggre-
gate (MTA) is a

Portland cement–derived
hydraulic material that
has been widely used in a
variety of applications in
endodontics as supported
by a broad body of evi-
dence (1, 2). MTA has
excellent physical and
biological properties such
as biocompatibility, bio-
activity, and sealing ability

(1, 3). This sealing capacity is largely attributed to MTA’s bioactivity and ability to
release calcium ions and produce an apatite layer in the presence of phosphate-
containing physiological fluids (4–7). The crystalline deposits produced by the
interaction of MTA and physiological fluids positively influence the push-out bond
strength of MTA. Conversely, MTA cement fails to present the physical properties
required for a root canal sealer, which leads to increasing efforts to create an ideal
MTA-based sealer with remarkable balance between its biological and physicochemical
characteristics (1, 3, 8).

EndoSeal MTA (Maruchi, Wonju, Korea), a pozzolan-based MTA sealer, was
recently introduced. It consists of a premixed and pre-loaded material confined into
an air-tight syringe that permits its direct application into the root canals. During the
injection, EndoSeal absorbs the environmental moisture from atmospheric air and
sets without the need of previous powder/liquid or base/catalyst mixing (9, 10). This
sealer contains pozzolan cement, which gets cementitious properties after the
pozzolanic reaction with calcium hydroxide and water, allowing efficient flow of the
pre-mixed substrate with adequate working consistency and reduced setting time (4,
11). The incorporation of small particle pozzolan cement, which is a mineral
aggregate with watery calcium silicate hydration, resulted in fast-setting MTA without
the addition of a chemical accelerator (4, 12).

Previous reports have demonstrated the capacity of EndoSeal MTA to induce
dentinal tubule biomineralization (11), satisfactory biological and physical properties
(10), favorable cytocompatibility (13), and superior sealer distribution (9). To date,
however, no study has ranked the push-out bond strength of EndoSeal. Therefore, the
present study aimed to investigate the bond strength to root dentin of this new injectable
pozzolan-based root canal sealer by usingMTA Fillapex (Angelus, Londrina, Brazil) and
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AH Plus (Dentsply, DeTrey, Konstanz, Germany) as control materials for
comparison. The following null hypotheses were tested:

1. There is no difference in dentin bond strength between the tested
root canal sealers.

2. There is no difference in bond strength to root dentin between both
MTA-derived materials (EndoSeal and MTA Fillapex).
Materials and Methods
Sample Size Calculation

According to a previous study (14), an effect size of 0.74 was
added to power b = 95% and a = 5% inputs into F test family for
repeated-measures analysis of variance (G*power 3.1 for Macintosh).
A total size of 9 slices samples was necessary to identify differences
among the tested materials.

Sample Preparation
Local Ethics Committee approved the study. Six maxillary incisors

were selected and cleaned by removing the hard deposits and the soft
tissues with the aid of curettes and 5.25% NaOCl immersion for 10 mi-
nutes. After that, coronal and apical segments were removed from each
tooth to obtain the middle third. Three horizontal cross sections
(1 � 0.1 mm thick) were obtained from this segment by using a
low-speed saw (ISOMET; Buehler Ltd, Lake Buff, IL) with a diamond
disk (Ø 125� 0.35� 12.7 mm; Buehler Ltd) under continuous water
irrigation. The final thickness of each slice was checked with the aid of a
digital caliper with accuracy of 0.001 mm (Avenger Products, North
Plains, OR). Eighteen root slices were produced following this protocol
(Fig. 1).

Preparation of Canal-like Holes for the Push-out Assay
Samples were drilled by using a 0.8-mm cylindrical carbide bur.

Three canal-like holes were made parallel to the root canal in each root
slice. The perforations were performed under constant water irrigation
by using a vertical drill stand (Dremel Workstation 220, Mount Pros-
pect, IL) to standardize the holes drilled perpendicular to the surface.
A minimum distance of 1 mmwas established between the holes drilled,
the external cementum, and the root canal walls.

Thereafter, all samples were immersed in 2.5% sodium
hypochlorite (NaOCl) solution for 15 minutes and further immersed
for 1 minute in bidistilled water to neutralize the NaOCl solution. The
smear layer was removed by using 17% EDTA for 3 minutes, bidistilled
Figure 1. Schematic representation of sample preparation.
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water for 1 minute, 2.5% NaOCl for 1 minute, and a final flush with bi-
distilled water for 1 minute. The holes were dried with absorbent paper
points, and each of the 3 holes of every root slice was filled with 1 of the
selected materials: EndoSeal, MTA Fillapex, or AH Plus. All the materials
were mixed according to the manufacturers’ instructions and were
delivered into the holes. Bubble formation was avoided by gentle vibra-
tion while placing the material. Finally, the filled root slices were stored
in contact with phosphate-buffered saline solution (pH 7.2) at 37�C for
7 days before the push-out assessment (Fig. 1).

Push-out Assessment
A plunger tip of 0.6-mm diameter was set up over the tested ma-

terial, avoiding touching the surrounding dentin wall. Loading was per-
formed on a universal testing machine (EMIC DL200 MF, S~ao Jos�e dos
Pinhais, PR, Brazil) at a head-speed of 0.5 mm/min�1 until the
displacement of the material. The load was applied only in a coronal-
apical direction. A load� time curve was plotted during the test by using
a real-time software program. Themaximum load at failure, recorded in
newtons, was divided by the area of the bonded interface, resulting in a
bond strength expression in MPa2. The adhesion area of the root canal
material was calculated by using the following formula: area – 2pr� h,
wherep = the constant 3.14, r = radius of the cavity with the root canal
material (0.4 mm), and h = height of the material (1.0 mm)3.

Data Presentation and Analysis
After testing for data skewing (Shapiro-Wilk test, P < .05), the

push-out from paired artificial holes was ranked by using a non-
parametric Friedman procedure. Multiple comparisons were per-
formed with the aid of a Wilcoxon signed rank test with Bonferroni
correction. Significance boundary was set at a = 5% (SPSS 17.0;
SPSS Inc, Chicago, IL).

Results
Friedman test confirmed a significant dissimilarity in push-out

ranks among the tested cements (P < .01). Wilcoxon signed rank
test demonstrated AH Plus had significant superior resistance to
dislodgment compared with Endo Seal (P < .01) or MTA Fillapex
(P < .01), whereas MTA Fillapex presented the lowest push-out values
as compared with Endo Seal (P < .01) or AH Plus (P < .01). Figure 2
displays a graphic representation of the findings.

Discussion
The use of endodontic sealers during root canal obturation yields

the sealing between gutta-percha and dentinal walls, acting against bac-
terial leakage that may lead to endodontic failures (15, 16). Every
currently available root canal sealer presents limitations regarding
the ideal properties of an endodontic sealer (17). Therefore, new
sealers are constantly being developed, especially calcium silicate–
based or bioceramics materials—MTA and BioAggregates—because
of their biological and sealing properties (3, 8, 18). A relevant
physical aspect of a newly developed injectable pozzolan-based sealer
(EndoSeal MTA), the dentinal bond strength, was ranked in
comparison with MTA Fillapex and AH Plus.

The first null hypothesis was not accepted because a significant dif-
ference in push-out was observed among the materials. Both MTA-
based sealers, EndoSeal and MTA Fillapex, produced inferior dentinal
bond strength values compared with AH Plus. The present result is in
accordance with several previous studies in which AH Plus was also
associated with significantly higher bond strength values when
compared with other sealers (19–23). The superior bond strength
property of AH Plus may be largely attributed to the capacity of
Push-out Bond Strength of EndoSeal 1657



Figure 2. Horizontal box plot of the central tendency push-out values dis-
played by the 3 cements. Significant difference among the 3 tested sealers
was detected by Friedman and Wilcoxon signed rank tests (P < .05).
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producing a covalent bond by mixing diepoxide compounds and
polyamine paste during its manipulation so that each amine group in
the collagen network reacts with an open epoxide ring, resulting in a
heavily cross-linked polymer that is rigid and strong (24, 25). In
addition, low polymerization stress, long-term dimensional stability,
and efficient cohesion between molecules had already been reported
to increase root dentin micro retention of AH Plus (19, 20, 24).

EndoSeal displayed significantly superior bond strength perfor-
mance than MTA Fillapex. Hence, the second null hypothesis was
also rejected. The chemical composition of a root canal sealer has sub-
stantial impact over adhesion capacity. The base material of EndoSeal is
calcium silicate, which presents a similar chemical composition to that
of MTA cement. Hence, it is expected that EndoSeal would display com-
parable biological and physical properties to this cement. Indeed,
recent studies confirmed that EndoSeal produces consistent dentinal tu-
bule biomineralization beyond the sealer tag (11) and presents
biocompatibility, solubility, radiopacity, and high alkalinity in similar
levels as commercially available MTA (10, 13). In this context, it
seems that EndoSeal contains a significant percentage of MTA that
yields bioactivity and may explain its satisfactory bond strength
results. In addition, according to the manufacturer, EndoSeal
presents outstanding flowability, which may be related to the sealer
penetration into dentinal tubules, anatomic irregularities, or
accessory canals and thus results in increase in sealing ability and
bond strength. EndoSeal also has excellent dentinal wall distribution
(9) that may result from its injection-type, self-setting use that has a clin-
ical advantage in terms of application. It is important to point out that it
was not possible to compare the values of dentin bond strength of Endo-
Seal with previous results because this is a pioneer evaluation of this
subject.

MTA Fillapex produced the worst results in the present study. This
is in agreement with previous research that also observed poor bond
strength values for MTA Fillapex (16, 22, 23). This is a paste-to-paste
sealer that, whenever mixed, establishes 2 important chemical reactions
that are responsible for the material’s setting and physical-mechanical
characteristics, the progressive hydration of the orthosilicate ions and
the reaction betweenMTA and salicylate resin (26). A 1:1 ratio of MTA:-
salicylate resin would be required to achieve an appropriate setting.
This allows the formation of an ionic polymer containing calcium sili-
cate particles that reacts with water (1, 8, 27). The final reaction leads to
the formation of calcium hydroxide and a nanoporous amorphous
calcium silicate hydrate gel that polymerizes and creates a solid
network (1, 27). However, it has been speculated that MTA Fillapex
displays a higher ratio of salicylate resin than MTA, which affects the
1658 Silva et al.
chemical reaction among these components and explains the
extended setting time of this material (8). During setting time, endodon-
tic sealers with salicylate resin experience an initial volumetric
shrinkage that increases the contraction factor (28). Hence, higher
amounts of salicylate resin associated with extended setting time in-
crease dimensional changes and formation of gaps between root canals
and filling materials. This affects the bond strength of a root canal sealer
both directly and indirectly because it may interfere with other proper-
ties such as flowability and solubility that are also associated with
dentinal wall sealing. Therefore, the extended setting time consequent
of an unbalanced resin/MTA ratio may explain the unenthusiastic
MTA Fillapex results regarding push-out bond strength.

Calcium silicate–based sealer bioactivity represents the sponta-
neous production of an apatite layer, dentin intratubular calcium,
and silicon ions incorporation (29), as well as an intrafibrillar apatite
deposition (5) and production of tag-like structures at sealer-dentin
interface (5, 6, 29) that lead ultimately to dentin remineralization
(30) when in contact with phosphate-containing physiological fluids
(27, 31). Apatite nucleation resulting from bioactivity processes
improves the displacement resistance of filling materials by
producing a micromechanical bonding system to dentin that
decreases gaps at the interface (7). The ability to nucleate calcium
phosphate is strictly correlated to environmental conditions, the mate-
rial’s chemical composition, and calcium-releasing properties (32).
Although MTA Fillapex is an MTA-based sealer, the particle size and
composition of several types of MTA differ. MTA Fillapex contains higher
amounts of resins and less than 20% MTA particles, which may be an
insufficient proportion to demonstrate the full biological and sealing
characteristics of this cement (25, 33). Furthermore, MTA Fillapex
has bismuth oxide as the radiopacifier, which is associated with
increase in deterioration of mechanical strength, porosity, and
material degradation, which was mostly replaced by zirconium oxide
in EndoSeal (13, 34).

The present study was set to improve the reliability of the push-out
model proposed. To reduce confounding factors such as mineralization
and tooth age and hardness (14, 35), the same dentin source was
provided to all root canal sealers. A cylindrical final shape was
established for all canal-like holes, providing the standardization of
size and internal root canal anatomy that ultimately improves biological
standardization of the holes at the baseline that allows a paired mathe-
matical evaluation to be taken, which reduces the amount of samples
required for a test. The root canal space was filled only with the sealer
to obtain an application of the compressive load over the sealer without
the presence of a resilient gutta-percha material and to provide better
control of the type of failure mode that could lead to misinterpretations
of the results.

On the basis of the results, EndoSeal MTA presents superior bond
strength performance compared with MTA Fillapex, although it is not
comparable to a traditional epoxy resin–based sealer and thus may
be taken as a new alternative of injectable bio-tight root canal sealer.
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