

RISK ASSESSMENT OF CONTAMINANTS AND ADDITIVES IN FOOD

Environnemental Contaminants

Food Additives

Process contaminants

Pesticides

HOW IS RISK ASSESSMENT HELPING IN KEEPING OUR FOOD SAFE?

HAZARD

EXPOSURE

X

RISK = HAZARD

X

EXPOSURE

HAZARD

Risk Assessment of chemicals

Hazard characterisation

- Toxicological studies
- Epidemiological studies

Health based guidance values

ADI Acceptable Daily Intake

TDI Tolerable Daily Intake

TWI Tolerable Weekly Intake

ARfD Acute Reference Dose

•••

Health based guidance value

is a <u>science-based</u> recommendation for the maximum (oral) exposure to a substance that is <u>not expected to result in an appreciable health risk</u>, taking into account current safety data, uncertainties in these data, and the likely duration of consumption.

Risk Assessment of chemicals

Intake from food

- Concentration levels
- Food consumption

Risk Assessment of chemicals

Hazard characterisation

- Toxicological studies
- Epidemiological studies

Health based guidance values

ADI Acceptable Daily Intake
TDI Tolerable Daily Intake

TWI Tolerable Weekly Intake

ARfD Acute Reference Dose

•••

Intake from food

- Food concentration levels
- Food consumption data

Exposure <?> HBGV

Margin of exposure (MOE)

Methodology

Risk assessment

Free Glutamate - Introduction

• L-glutamic acid is a non-essential amino acid present in food, either bound to proteins or in free form.

- Free glutamate in food (FGlu) originates from food processes (i.e. ripening of cheese), natural presence (i.e. yeast, fruit & vegetables) or added intentionally for its flavor-enhancing effect, inducing the "umami" taste.
- Glutamic acid and its salts are authorized in Europe as Food Additive (E 620 to 625)
 - Can be added to a wide variety of food products, with a **maximum permitted level of 10 g/kg**. Certain subcategories like "salt substitutes" and "seasonings and condiments" can use it at **quantum satis** level.

Free Glutamate - EFSA's opinion (2017)

- Evaluated six food additives (E 620-625).
- Group ADI of 30 mg/kg bw/day
- To protect effects in humans: headache, raised blood pressure and increased insulin levels
- Exposure assessment estimates exceeded the newly set ADI
- Belgian population:
 - **High consumers** exceeded the ADI for all population groups; **mean population** exposure was close to the ADI, except for **toddlers** and **children**, where it was exceeded.

Free Glutamate - Objectives

The main objective is to evaluate whether there is an exceedance of the free glutamate ADI for the Belgian population.

- High throughput and cost-efficient analytical method for the determination of free glutamate
- Samples containing E620-625, other samples (and ingredients) suspected to be rich in FGIu, samples from restaurants and take-away
- Exposure assessment with several scenarios
 - All sources
 - Natural sources
 - Food additive use
 - Brand loyal

Sampling strategy

600 samples

Free Glutamate - Results

- Glutamate additive: E 621
 - Increased levels of FGlu when E 621 is added
 - Very high levels in seasonings
 - Six samples with incorrect labeling
- « Natural occurrence »
 - Very high levels in yeasts and yeasts products
 - High levels in tomato, ripened cheese → Final products
 - High levels in soy sauce

Habitual intake and risk evaluation of FGlu from natural sources

- Mean exposure to FGlu: 5.0 10 mg/kg_{bw}/d
- P95 exposure to FGlu: 8.4 17 mg/kg_{bw}/d
- Children have a larger exposure to FGlu than adolescents and adults
- Exposure below group ADI (28-57% of ADI at P95 exposure)

Habitual intake and risk evaluation of FGlu from E620-625

Refined exposure scenario c:

- Mean exposure to FGlu: 1.7 2.6 mg/kg_{bw}/d
- P95 exposure to FGlu: 4.9 7.5 mg/kg_{bw}/d
- Children have a larger exposure to FGlu than adolescents and adults
- Exposure below group ADI (16-25% of ADI at P95 exposure)

Habitual intake and risk evaluation of FGlu from all sources

- Mean exposure to FGlu: 6.5 13 mg/kg_{bw}/d
- P95 exposure to FGlu: 11 23 mg/kg_{bw}/d
- Children have a larger exposure to FGlu than adolescents and adults
- Exposure below group ADI (37-74% of ADI at P95 exposure)

Exposure & risk evaluation

- Brand-loyalty for ripened cheese (all age populations)
- Mean exposure to FGlu: 7.5 14 mg/kg_{bw}/d
- P95 exposure to FGlu: 13 25 mg/kg_{bw}/d
- Children have a larger exposure to FGlu than adolescents and adults
- Exposure below group ADI (43-82% of ADI at P95 exposure)

Free Glutamate - Conclusions

General population

- There is currently no concern for risks related to the dietary intake of free glutamate for children – adolescents – adults
 - Estimated P95 intakes below ADI
 - Regular re-evaluation of exposure adviced as brand-loyal high exposure is at 82% of ADI for children
- Major contribution to exposure comes from natural/non-food additive sources
- Major contributing food groups are
 - ripened cheese,
 - stock cubes or granulates and
 - tomatoes

PFAS - Introduction

Toxic Forever Chemicals

- → Persistent in the environment
- accumulate in living organisms

- pose a risk to our health and the environment
- ✓ Impact on immune system, even at very low concentration. Illustrated by decreased antibody response to vaccination
- ✓ Increase in cholesterol level
- ✓ Cancers
- Effect on fertility

PFAS assessment & regulation – an ongoing process

PFAS - Study Objectives

Find potential other sources of food contamination

Assess the exposure & risk for the Belgian population

PFAS occurrence in the Belgian food chain

PFAS - Challenges

TWI = Σ 4 PFAS (PFOA, PFOS, PFNA, PFHxS)

Very low concentration!

ng / kg = ppt level!

Selection of representative food samples

How many PFAS were found in the samples?

PFAS - Results

No detection of the 25 PFAS in 3 categories

Detection of at least 1 of the 25 PFAS - 15-25% of samples

Detection of at least 1 of the 25 PFAS - 25-50% of samples

Detection of at least 1 of the 25 PFAS - 50-75 % of samples

PFAS - Risk Assessment

Σ4PFAS (**PFOA**, **PFOS**, **PFNA** and **PFHxS**)

- No exceedance for adolescents and adults
- Exceedance by 2.2% of children

TWI of 4.4 ng/kg bw/week

□ No health concerns for the majority of the Belgian population

PFAS - Conclusions

Dietary Σ4PFAS exposure (EFSA approach)

- No appreciable health risk for the large majority of the Belgian population
- 2.2% of the children population (3-9y) exceeds the TWI

Population is exposed to more than 4 PFAS

- Legal limits needed for all relevant PFAS present in food and all relevant food groups
 - Today only 3 food groups & 4 PFAS !!
- Assess the combined exposure and risk to all PFAS in food
 - Harmonized approaches for exposure and risk assessment
 - Health based guidance values for all PFAS present in food
- Understanding all exposure routes
 - Dietary intake is not the only route of exposure

TAKE HOME MESSAGE

Prerequisites

- Characterization of the HAZARD.
- Knowing the consumption patterns
- Adequate analytical methods
- Food composition data & occurrence data

Risk Assessment is an important tool

- For health
 - Understand the risk
 - Identify exposure routes
- For policy
 - Take further steps in protecting public health
 - Establish legal limits
 - Prioritize substances

Acknowledgement

Séverine Goscinny, Céline Vanhée, Pauline Detry, Marie Willocx Els Van Hoeck, Mirjana Andjelkovic, Nadia Waegeneers, Virginie Van Leeuw, Mélanie Di Mario, Guillaume Fosseprez, Adrien Murphy,

Funding: Health
Food Chain Safety
Environment

Contact

Joris Van Loco • Joris. Van Loco@sciensano.be

.be