PIETER POT

CARBON FOOTPRINT COMPARISON

Goal

Compare carbon footprint of Reusing glass jars With
Recycling plastic packaging

Key takeaways

Reusing glass jars for 40 times ${ }^{1}$

Saves $4 \mathrm{~kg}-455 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}$ ．

Per household ${ }^{2}$ ，per year compared to recycling plastic At current energy mix and plastic from fossil fuels

Reusing glass jars for 40 times 1

Saves $12 \mathrm{~kg}-198 \mathrm{~kg}$ CO2 eq．

Per household²，per year compared to recycling bioplastic
 At 100% renewable energy and plastic from sugarcane

Scope

IN
Emissions from material sourcing
Emissions from packaging production, cleaning and recycling Emissions from transport of packaging, with and without product

OUT

Emissions from transport of bulk food Emissions from production of food
Emissions from warehouse
Emissions from production of transport vehicles

Reference case

One household using
50 Products per week
2.600 Products per year

Package material per product
10-60 grams of plastic
500 grams of glass
1.000 grams of produc \dagger

Scenarios

1. Status quo

13% of energy from renewable energy sources ${ }^{1}$
Plastic from fossil fuels
2. Outlook 2050 100\% renewable energy² 100\% bioplastics
${ }^{1}$ RVO, 2017, National Energy Outlook, 77-gram $\mathrm{CO}_{2} / \mathrm{kWh}$
${ }^{2}$ Ministerie van Economische Zaken, 2016, Energieagenda

Lifecycle

Reuse glass jars

Typical reuse in beer breweries: 40 times ${ }^{1}$
Recycling times: indefinitely²

Scenario 1
Sourcing the raw materials for glass
Emits $0,07 \mathrm{~kg} \mathrm{CO}_{2}$ eq. per kg glass ${ }^{1}$.
 At feedstock mix with 50% recycled cullets ${ }^{2}$.

Scenario 2

Sourcing the raw materials for glass
Emits $0,07 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}$. per kg glass ${ }^{1}$.

At feedstock mix with 50% recycled cullets².

RODUCTION

Scenario 1
 Production of glass with conventional fossil fuels Emits $0,52 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq} . / \mathrm{kg} \mathrm{g}^{2}{ }^{1}{ }^{1}$

Scenario 2

Production of glass with 100% renewable energy Emits $0,08 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq} . / \mathrm{kg}$ glass ${ }^{1}$

ECYcING

Scenario 1
 Recycling glass to cullets requires $14 \mathrm{kWh} / \mathrm{t}$ glass ${ }^{1}$ which Emits $0,001 \mathrm{~kg}$ CO2 eq./kg glass

Scenario 2

Recycling glass to cullets with 100% renewable energy Emits 0 kg CO2 eq./kg glass²

Scenario 1
Washing one glass container

Emits $4,9 \mathrm{~g} \mathrm{CO}_{2} \in \mathrm{q}^{1}$.

Including carbon footprint of washing, drying, water and chemicals.

Scenario 2

Washing one glass container Emits 0,2g CO2 eq ${ }^{1}$. Including carbon footprint of water and chemicals.

R

$\stackrel{\square}{\text { TRANSPORTT }}$

ab

ab

Scenario 1

Transport 2.600 products per year
Emits $24,8 \mathrm{~kg} \mathrm{CO}_{2}$ eq.
Using a diesel truck

Scenario 2

Transport 2.600 products per year Emits of $0 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}^{2}$. Using electric truck

Scenario 1
Reusing 2.600 glass jars
Emits $56,5 \mathrm{~kg} \mathrm{CO}_{2}$ eq.
Per year.

Scenario 2

Reusing 2.600 glass jars Emits 5 kg CO2 eq.
Per year.

Lifecycle

Recycle plastic

Recycling times:1-2

MATERIAL RECYCLING ${ }^{3}$

${ }^{1}$ Material recycling without altering the chemical structure

2 Including shipment to production facility
${ }^{3}$ Recycled plastic for food packaging always contains a layer of virgin plastic to prevent contaminations
${ }^{4}$ Produces syngas, which can be used as a raw material to produce plastic
${ }^{5}$ Distance to Dutch production facility: 100 km
${ }^{6}$ Distance from distribution center: 100 km

Scenario 1

Production and recycling of plastic ${ }^{3}$
Emits $3,15 \mathrm{~kg} \mathrm{CO}_{2}$ eq. $/ \mathrm{kg}$ plastic ${ }^{12}$
8
Using fossil fuels.

Scenario 2

Production and recycling of plastic ${ }^{3}$
Emits $1,3 \mathrm{~kg} \mathrm{CO}_{2}$ eq. $/ \mathrm{kg}$ plastic ${ }^{1}$
Using 100% renewable energy and 100% bioplastics.

${ }^{1}$ Nature Journal of Climate Change, 2019, Strategies to reduce the global carbon footprint of plastics
2 Including emissions from transport for recycling
${ }^{3}$ Combination of material and chemical recycling

Scenario 1

Transport of 2.600 products per year
Emits $19,4 \mathrm{~kg}-20,5 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{eq}^{12}$.
Using diesel trucks.

Scenario 2

Transport of 2.600 products per year Emits $0 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}^{3}$. Using electric trucks

Tołal

Scenario 1
Using 2.600 plastic containers
Emits $60 \mathrm{~kg}-512 \mathrm{~kg} \mathrm{CO}_{2}$ eq.
Per year.

Scenario 2

Using 2.600 bioplastic containers Emits $17 \mathrm{~kg}-203 \mathrm{~kg}$ CO2 eq.
Per year.

Glass versus plastic

Reusing glass jars for 40 times ${ }^{1}$
Saves $4 \mathrm{~kg}-455 \mathrm{~kg}$ CO2 eq.
Per household², per year compared to recycling plastic
At current energy mix and plastic from fossil fuels

Reusing glass jars for 40 times 1

Saves $12 \mathrm{~kg}-198 \mathrm{~kg}$ CO2 eq.

Per household², per year compared to recycling bioplastic
 At 100% renewable energy and plastic from sugarcane

Reusable glass saves on average $230 \mathrm{~kg} \mathrm{CO}_{2}$ per year, per household*

Reusable glass saves on average 1\% per year, per household*

*Based on 50 products per week, at current energy mix
Average carbon footprint per capita of $11.500 \mathrm{~kg} \mathrm{CO}_{2}$ eq./year [EEA 2016]

APPENDIX

Transporł

Volume: $80 \mathrm{~m}^{3}$
Maximum payload: $25 \dagger$
Emissions' ${ }^{\text {: } 62-g r a m ~} \mathrm{CO}_{2} /$ ton-km

$00=006$

GLASS

Ship raw material ${ }^{3}$ for glass production Raw material2: $\quad 1,2 \mathrm{~kg} / \mathrm{kg}$ glass Total mass: $\quad 25 \dagger$ Amount of containers: 41.666 Distance: $\quad 100 \mathrm{~km}$
Emissions: $\quad 129 \mathrm{~kg} \mathrm{CO}_{2}$ Relative emissions: $\quad 3.1 \mathrm{~g} \mathrm{CO}_{2} /$ container
Ship glass retrieval for recycling
Weight per container:
$0,5 \mathrm{~kg}$
Total mass:
$25 t$
Amount of containers: $\quad 50.000$
Distance: 100 km
Emissions: $\quad 155 \mathrm{~kg} \mathrm{CO}_{2}$
Relative emissions: $3.1 \mathrm{~g} \mathrm{CO}_{2} /$ container

65 containers/year at reuse of 40 times
$0,20 \mathrm{~kg} \mathrm{CO}_{2}$ /year

65 containers/year at reuse of 40
times
$0,20 \mathrm{~kg} \mathrm{CO}_{2}$ /year
${ }^{1}$ ECTA, 2011, Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations
${ }_{2}$ Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions
3 Includes both raw materials and recycled cullets. Assumes that recycle plant is at the same location as the production facility

Transport

Volume: $80 \mathrm{~m}^{3}$
Maximum payload: 25t
Emissions' ${ }^{\text {: } 62-g r a m ~} \mathrm{CO}_{2} /$ ton-km

GLASS

Ship empty glass containers to warehouse Weight per container: $\quad 0.5 \mathrm{~kg}$ Total mass: $\quad 25 t$ Amount of containers: $\quad 50.000$ Distance: $\quad 100 \mathrm{~km}$ Emissions: $\quad 155 \mathrm{~kg} \mathrm{CO}_{2}$ Relative emissions: $\quad 3.1 \mathrm{~g} \mathrm{CO}_{2} /$ container
Ship filled glass containers to customers
Weight per container: $\quad 1.5 \mathrm{~kg}$
Total mass:
$25 t$
Amount of containers: $\quad 16.666$
Distance:
Emissions:
Relative emissions :
100 km
$155 \mathrm{~kg} \mathrm{CO}_{2}$ $9.3 \mathrm{~g} \mathrm{CO}_{2} /$ container

65 containers/year at reuse of 40 times $0,2 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{year}$

2.600 containers/year

24 kg CO 2 /year

Transport

Volume: $80 \mathrm{~m}^{3}$
Maximum payload: 25t
Emissions': 62-gram $\mathrm{CO}_{2} /$ ton-km

PLASTIC

Empty plastic containers

- Included in carbon footprint of plastic recycling

Filled glass containers

Weight per container: $\quad 1.005-1.06 \mathrm{~kg}$
Total mass:
$25 t$
Amount of containers: $\quad 23.584-24.875$
Distance: $\quad 100 \mathrm{~km}$
Emissions: $\quad 186 \mathrm{~kg} \mathrm{CO}_{2}$
Relative emissions: $7.47-7.88 \mathrm{~g} \mathrm{CO}_{2} /$ container

Washing

Containers/wash: 91

GLASS

Variables	
Electricity consumption²:	$40 \mathrm{kWh} / \mathrm{t}$ glass
Natural gas consumption (drying)2:	2: $25 \mathrm{~m} 3 / \mathrm{f}$ glass
Soda hydroxide consumption': 0,9	$0.9 \mathrm{~g} / \mathrm{wash}$
Water consumption per wash': 3,1	3,1 L/wash
Emissions	
Electricity3:	$77 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}$
Soda hydroxide production²	$1,12 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{kg}$
Water production and cleaning²:	$0,32 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m} 3$
Natural gas incineration4: 0,25	$0,25 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m} 3$

Electricity consumption²: $40 \mathrm{kWh} / \dagger$ glass
Natural gas consumption (drying)2: $25 \mathrm{~m} 3 / \mathrm{t}$ glass
Soda hydroxide consumption': $0,9 \mathrm{~g} / \mathrm{wash}$
Water consumption per wash': 3,1 L/wash

Soda hydroxide production²: $\quad 1,12 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{kg}$ Natural gas incineration4: $\quad 0,25 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m} 3$

SCENARIO 1 [Fossil fuels] 2.600 containers/year $12,7 \mathrm{~kg} \mathrm{CO}_{2}$ /year

SCENARIO 2 [100\% Renewable energy] 2.600 containers/year $0,6 \mathrm{~kg} \mathrm{CO} 2 /$ year ${ }^{5}$

[^0]
PIETER POT

CARBON FOOTPRINT COMPARISON

Goal

Compare carbon footprint of Reusing glass jars With
Recycling carton packaging

Key takeaways

Reusing glass jars for 40 times ${ }^{1}$
Saves $16 \mathrm{~kg}-111 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}^{2}$ ．
Per household ${ }^{3}$ ，per year compared to recycling cardboard At current energy mix
${ }^{3}$ Reference case of 2.600 products per household per year

Scope

IN
Emissions from material sourcing
Emissions from packaging production, cleaning and recycling Emissions from transport of packaging, with and without product

OUT

Emissions from transport of food from supplier to distribution center
Emissions from production of food ${ }^{2}$ Carbon sequestration from forests ${ }^{3}$

Sequestration

Background

Forests capture and store carbon - this process is called sequestration
Some carbon footprint analysis assign this carbon sink to cardboard products, with a reference forest of zero sequestration'.

This comparison excludes carbon sequestration

To assign carbon sequestration to cardboard would be misleading, since 1) these product have a significantly shorter carbon decay time compared to the natural decomposition of biomass in forests ${ }^{23} 4$ 2) managed forests may contain 25% 50% less carbon than natural forests ${ }^{5}$.

1. Swedish Environmental Research Institute, 2010, Carbon Footprint of Cartons in Europe.
2. Natural decomposition of biomass takes over 200 years to decay 95% of the carbon, while cardboard products take less than 8 years to decay 95% of the carbon.
3. Klein, D. Hollerl, S., Blaschke, M. and Schulz, C. 2013, The Contribution of Managed and Unmanaged Forests to Climate Change Mitigation-A Model Approach at Stand Level for the Main Tree Species in Bavaria
4. Pukkala, T. 2017, Does management improve the carbon balance of forestry?
5. Ontario Ministry of Natural Resources, 2010, The effects of forest management on carbon storage in Ontario's forests.

Reference case

One household using
50 Products per week
2.600 Products per year

Package material per product
15-40 grams' of White Lined Chipboard carton²
500 grams of glass ${ }^{3}$
1.000 grams of produc \dagger
${ }^{1}$ A range of weights is taken to compare the impact for different products
${ }^{2}$ Cardboard without plastic layers
${ }^{3}$ Average weight of current glass packaging (1L), assuming all type of products can be stored in this size

Lifecycle

Reuse glass jars

Typical reuse in beer breweries: 40 times ${ }^{1}$
Recycling times: indefinitely²

Sourcing

Sourcing the raw materials for glass
Emits $0,07 \mathrm{~kg} \mathrm{CO} 2$ eq. per kg glass ${ }^{1}$.

At feedstock mix with 50% recycled cullets ${ }^{2}$.

Production
 Production of glass with conventional fossil fuels Emits 0,52 kg CO2 eq./kg glass ${ }^{1}$

Recycling

Recycling glass to cullets requires $14 \mathrm{kWh} / \mathrm{t}$ glass ${ }^{\prime}$ which Emits $0,001 \mathrm{~kg}$ CO2 eq. $/ \mathrm{kg}$ glass
'Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions 2 Given a fully electric recycling process

Washing

Washing one glass container
Emits $4,9 \mathrm{~g} \mathrm{CO}_{2}$ eq'.
Including carbon footprint of washing, drying, water and chemicals.

Total

Reference case
Reusing 2.600 glass jars Emits $56,5 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}$.

Per year.

Lifecycle

Recycle cardboard

Recycling times:5-71

${ }^{1}$ Pro Carton, Carbon Footprint
${ }^{2}$ Distance to Dutch production facility: 100 km
${ }^{3}$ Distance from distribution center: 100 km
${ }^{4}$ Swedish Environmental Research Institute, 2010, Carbon Footprint of Carton in Europe
${ }^{5}$ Assuming recycling and production is done at one location
${ }^{6}$ Transport from recycling plant to landfill/incinerator is neglected

Cardboard

Production
Production and recycling of cardboard Emits $0,96 \mathrm{~kg} \mathrm{CO}_{2}$ eq./kg cardboard ${ }^{2}$

${ }^{1}$ Swedish Environmental Research Institute, 2010, Carbon Footprint of Carton in Europe
2 Including emissions from transport of raw materials

Cardboard

영

[^1] Using diesel trucks.

Cardboard

Incineration

Incinerating end-of-life cardboard
Emits $1,1 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq} / \mathrm{kg}$ cardboard1'.
16% of the cardboard ends here?

Landfill

Landfill of end-of-life cardboard Emits $1,3 \mathrm{~kg}$ CO2 eq/kg cardboard1 24% of the cardboard ends herel

Total

Cardboard
Using 2.600 cardboard containers Emits $73 \mathrm{~kg}-168 \mathrm{~kg} \mathrm{CO} 2$ eq.
Per year.

Glass versus cardboard

Reusing glass jars for 40 times ${ }^{1}$
Saves $16 \mathrm{~kg}-111 \mathrm{~kg} \mathrm{CO} 2 \mathrm{eq}$.
Per household ${ }^{2}$, per year compared to recycling cardboard \qquad At current energy mix
${ }^{2}$ Reference case of 2.600 products per household per year

Reusable glass saves on average

$64 \mathrm{~kg} \mathrm{CO}_{2}$
 per year, per household* compared to cardboard packaging

Reusable glass saves on average

$0,3 \% \mathrm{CO}_{2}$ per year, per household* compared to cardboard packaging

*Based on 50 products per week, at current energy mix
Average carbon footprint per capita of $11.500 \mathrm{~kg} \mathrm{CO}_{2}$ eq./year [EEA 2016]

APPENDIX

Transporł

Volume: $80 \mathrm{~m}^{3}$
Maximum payload: $25 \dagger$
Emissions' ${ }^{\text {: } 62-g r a m ~} \mathrm{CO}_{2} /$ ton-km

GLASS

Ship raw material ${ }^{3}$ for glass production Raw material2: $\quad 1,2 \mathrm{~kg} / \mathrm{kg}$ glass Total mass: $\quad 25 \dagger$ Amount of containers: 41.666 Distance: $\quad 100 \mathrm{~km}$
Emissions: $\quad 129 \mathrm{~kg} \mathrm{CO}_{2}$ Relative emissions: $3,1 \mathrm{~g} \mathrm{CO}_{2} /$ container
Ship glass retrieval for recycling
Weight per container:
$0,5 \mathrm{~kg}$
Total mass:
$25 t$
Amount of containers: $\quad 50.000$
Distance: 100 km
Emissions: $\quad 155 \mathrm{~kg} \mathrm{CO}_{2}$
Relative emissions: $3.1 \mathrm{~g} \mathrm{CO}_{2} /$ container

65 containers/year at reuse of 40 times
$0,2 \mathrm{~kg} \mathrm{CO}_{2}$ /year

65 containers/year at reuse of 40 times
$0,2 \mathrm{~kg} \mathrm{CO}_{2}$ /year
${ }^{1}$ ECTA, 2011 , Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations
${ }_{2}$ Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions
3 Includes both raw materials and recycled cullets. Assumes that recycle plant is at the same location as the production facility

Transport

Volume: $80 \mathrm{~m}^{3}$
Maximum payload: 25t
Emissions' ${ }^{\text {: } 62-g r a m ~} \mathrm{CO}_{2} /$ ton-km

GLASS

Ship empły glass containers to warehouse Weight per container: 0.5 kg Total mass: $25 \dagger$ Amount of containers: 50.000 Distance: $\quad 100 \mathrm{~km}$
Emissions: $\quad 155 \mathrm{~kg} \mathrm{CO}_{2}$ Relative emissions: $\quad 3.1 \mathrm{~g} \mathrm{CO}_{2} /$ container
Ship filled glass containers to customers
Weight per container: $\quad 1.5 \mathrm{~kg}$
Total mass:
$25 \dagger$
Amount of containers: 16.666
Distance:
100 km
Emissions :
$155 \mathrm{~kg} \mathrm{CO}_{2}$
Relative emissions: $0.93 \mathrm{~g} \mathrm{CO}_{2} /$ container
2.600 containers/year
$24 \mathrm{~kg} \mathrm{CO}_{2}$ /year

65 containers/year at reuse of 40 times
$0,2 \mathrm{~kg} \mathrm{CO}_{2}$ /year

Transport

Volume: $80 \mathrm{~m}^{3}$ Maximum payload: 25t
Emissions' ${ }^{\text {: }} 62$-gram $\mathrm{CO}_{2} /$ ton-km

CARDBOARD

Washing

Containers/wash: 91

GLASS

Variables	
Electricity consumption²:	$40 \mathrm{kWh} / \mathrm{t}$ glass
Natural gas consumption (drying)2:	2: $25 \mathrm{~m} 3 / \mathrm{f}$ glass
Soda hydroxide consumption': 0,9	$0.9 \mathrm{~g} / \mathrm{wash}$
Water consumption per wash': 3,1	3,1 L/wash
Emissions	
Electricity3:	$77 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}$
Soda hydroxide production²	$1,12 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{kg}$
Water production and cleaning²:	$0,32 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m} 3$
Natural gas incineration4: 0,25	$0,25 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m} 3$

Electricity consumption²: $40 \mathrm{kWh} / \dagger$ glass
Natural gas consumption (drying)2: $25 \mathrm{~m} 3 / \mathrm{t}$ glass
Soda hydroxide consumption': $0,9 \mathrm{~g} / \mathrm{wash}$
Water consumption per wash': 3,1 L/wash

Soda hydroxide production²: $\quad 1,12 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{kg}$ Natural gas incineration4: $\quad 0,25 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{m} 3$

SCENARIO 1 [Fossil fuels] 2.600 containers/year $12,7 \mathrm{~kg} \mathrm{CO}_{2}$ /year

SCENARIO 2 [100\% Renewable energy] 2.600 containers/year $0,6 \mathrm{~kg} \mathrm{CO} 2 /$ year ${ }^{5}$

[^2]
[^0]: ${ }^{1}$ Based on current operation at Pieter Pot
 2 Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions
 ${ }^{3}$ RVO, 2017 , National Energy Outlook

 ${ }^{5}$ Only including emissions from sodium hydroxide production and water treatment

[^1]: Transport
 Transport of 2.600 products per year Emits $16,6 \mathrm{~kg}-17,7 \mathrm{~kg} \mathrm{CO}_{2}$ eq ${ }^{1}$.

[^2]: ${ }^{1}$ Based on current operation at Pieter Pot
 2 Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions
 ${ }^{3}$ RVO, 2017 , National Energy Outlook

 ${ }^{5}$ Only including emissions from sodium hydroxide production and water treatment

