PIETER POIT

CARBON FOOTPRINT COMPARISON

Compare carbon footprint of **Reusing glass jars** With **Recycling plastic packaging**

Key takeaways

Reusing glass jars for 40 times¹ Saves 4 kg – 455 kg CO2 eq. Per household², per year compared to recycling plastic At current energy mix and plastic from fossil fuels

Reusing glass jars for 40 times¹ Saves 12 kg – 198 kg CO2 eq. Per household², per year compared to recycling bioplastic At 100% renewable energy and plastic from sugarcane

¹ Glass of 500 grams, compared to plastic of 10-60 grams ²Reference case of 2.600 products per household per year

Scope

ΙΝ

Emissions from material sourcing Emissions from packaging production, cleaning and recycling Emissions from transport of packaging, with and without product

OUT Emissions from transport of bulk food Emissions from production of food Emissions from warehouse Emissions from production of transport vehicles

Reference cdse

One household using 50 Products per week 2.600 Products per year

Package material per product 10-60 grams of plastic 500 grams of glass 1.000 grams of product

Scendrios

1. Status quo

13% of energy from renewable energy sources¹ Plastic from fossil fuels

2. Outlook 2050 100% renewable energy² 100% bioplastics

¹ RVO, 2017, National Energy Outlook, 77-gram CO₂/kWh ² Ministerie van Economische Zaken, 2016, Energieagenda

Lifecycle

Reuse glass jars

Typical reuse in beer breweries: 40 times¹ Recycling times: indefinitely²

- ² Victoria State Government, 2013
- ³ Distance from mine:100 km
- ⁴ Distance from production facility:100 km
- ⁵ Distance from distribution center: 100 km

Scenario 1 Sourcing the raw materials for glass Emits 0,07 kg CO_2 eq. per kg glass¹. At feedstock mix with 50% recycled cullets².

Scenario 2 Sourcing the raw materials for glass Emits 0,07 kg CO2 eq. per kg glass¹. At feedstock mix with 50% recycled cullets².

¹ Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions ² EU Average, EU, 2010, JRC Reference Report, Best Available Techniques (BAT) Reference Document for the Manufacture of Glass

Scenario 1 Production of glass with conventional fossil fuels Emits 0,52 kg CO2 eq./kg glass¹

Scenario 2 Production of glass with 100% renewable energy Emits 0,08 kg CO2 eq./kg glass¹

¹Ecofys, 2018, Methodology for the free allocation of emission allowances in the EU ETS

Scenario 1 Recycling glass to cullets requires 14 kWh/t glass¹ which Emits 0,001 kg CO2 eq./kg glass

Scenario 2 Recycling glass to cullets with 100% renewable energy Emits 0 kg CO2 eq./kg glass²

¹Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions 2 Given a fully electric recycling process

Scenario 1 Washing one glass container Emits 4,9g $CO_2 eq^1$. Including carbon footprint of washing, drying, water and chemicals.

Scenario 2 Washing one glass container Emits 0,2g CO2 eq¹. Including carbon footprint of water and chemicals.

¹See Appendix for detailed calculations

Scenario 1 Transport 2.600 products per year Emits 24,8 kg CO₂ eq¹. Using a diesel truck

Scenario 2 Transport 2.600 products per year Emits of 0 kg CO2 eq². Using electric truck

¹See Appendix for calculation ²Based on 100% renewable energy scenario

Scenario 1 Reusing 2.600 glass jars Emits 56,5 kg CO₂ eq. Per year.

Scenario 2 Reusing 2.600 glass jars Emits 5 kg CO2 eq. Per year.

Recycle plastic Recycling times:1-2¹

- ¹ Material recycling without altering the chemical structure
- ² Including shipment to production facility
- ³Recycled plastic for food packaging always contains a layer of virgin plastic to prevent contaminations
- ⁴ Produces syngas, which can be used as a raw material to produce plastic
- ⁵ Distance to Dutch production facility: 100km
- ⁶ Distance from distribution center: 100 km

MATERIAL **RECYCLING³**

Plastic

Scenario 1 Production and recycling of plastic³ Emits 3,15 kg CO₂ eq./kg plastic¹² Using fossil fuels.

Scenario 2 Production and recycling of plastic³ **Emits 1,3 kg CO₂ eq./kg plastic¹** Using 100% renewable energy and 100% bioplastics.

¹ Nature Journal of Climate Change, 2019, Strategies to reduce the global carbon footprint of plastics
² Including emissions from transport for recycling
³ Combination of material and chemical recycling

Plastic

Scenario 1 Transport of 2.600 products per year Emits 19,4 kg – 20,5 kg CO₂ eq¹². Using diesel trucks.

Scenario 2 Transport of 2.600 products per year Emits 0 kg CO2 eq³. Using electric trucks

¹Excluding transportation for recycling since this is already included in the plastic emissions for the recycling ²See Appendix for calculation ³Based on 100% renewable energy scenario

Scenario 1 Using 2.600 plastic containers Emits 60 kg - 512 kg CO₂ eq. Per year.

Scenario 2 Using 2.600 bioplastic containers Emits 17 kg – 203 kg CO2 eq. Per year.

Glass versus plastic

Reusing glass jars for 40 times¹ **Saves 4 kg – 455 kg CO2 eq.** Per household², per year compared to recycling plastic At current energy mix and plastic from fossil fuels

Reusing glass jars for 40 times¹ **Saves 12 kg – 198 kg CO2 eq.** Per household², per year compared to recycling bioplastic At 100% renewable energy and plastic from sugarcane

¹ Glass of 500 grams, compared to plastic of 5-60 grams ² Reference case of 2.600 products per household per year

Reusable glass saves on average 230 kg CO₂ per year, per household*

*Based on 50 products per week, at current energy mix

Reusable glass saves on average per year, per household*

*Based on 50 products per week, at current energy mix Average carbon footprint per capita of 11.500 kg CO_2 eq./year [EEA 2016] household size 2.2

reinsport

Volume: 80 m³ Maximum payload: 25t Emissions¹: 62-gram CO₂/ton-km

GLASS

Ship raw material ³ for g	glass production	
Raw material ² :	1,2 kg/kg glass	
Total mass:	25†	65 COI
Amount of containers: 41.666		– times
Distance:	100 km	0,20 k
Emissions:	129 kg CO ₂	
Relative emissions:	$3,1 \text{ g CO}_2/\text{container}$	
Ship glass retrieval for r	ecycling	
Weight per contain	er: 0,5 kg	
Total mass:	25†	65 COI
Amount of containers: 50.000		- times
Distance:	100 km	0,20 k
Emissions:	155 kg CO ₂	0,20 R
Relative emissions:	$3,1 \text{ g CO}_2/\text{container}$	

¹ ECTA, 2011, Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations
² Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions
³ Includes both raw materials and recycled cullets. Assumes that recycle plant is at the same location as the production facility

ontainers/year at reuse of 40 s kg CO₂ /year

ontainers/year at reuse of 40 s kg CO₂ /year

Transport

Volume: 80 m³ Maximum payload: 25t Emissions¹: 62-gram CO₂/ton-km

GLASS

Ship empty glass containers to warehouse	
Weight per container: 0.5 kg	
Total mass: 25t	65 CO
	times
	0,2 kg
Emissions: 155 kg CO ₂	·/3
Relative emissions: 3.1 g CO_2 /container	
Ship filled glass containers to customers	
Weight per container: 1.5 kg	
Total mass: 25t	
Amount of containers: 16.666	2.600
Distance: 100 km	24 kg
Emissions : 155 kg CO ₂	
Relative emissions : $9.3 \text{ g CO}_2/\text{container}$	

ontainers/year at reuse of 40 $g CO_2 / year$

containers/year CO_2 /year

reinsport

Volume: 80 m³ Maximum payload: 25t Emissions¹: 62-gram CO₂/ton-km

PLASTIC

Empty plastic containers

- Included in carbon footprint of plastic recycling

Filled glass containers

Weight per container: Total mass: Amount of containers: Distance: Emissions :

25† 23.584 - 24.875 100 km 186 kg CO₂ Relative emissions: $7.47 - 7.88 \text{ g CO}_2/\text{container}$

1.005-1.06 kg

2.600 containers/year $19 - 20 \text{ kg CO}_2 / \text{year}$

Containers/wash: 9¹

GLASS

Variables	
Electricity consumption ² :	40 kWh/t gla
Natural gas consumption (drying)2:	25 m3/t glas
Soda hydroxide consumption ¹ : 0,9	g/wash
Water consumption per wash ¹ : 3,1	L/wash
Emissions	
Electricity ³ :	77 g CO ₂ /kW
Soda hydroxide production ² :	1,12 kg CO ₂
Water production and cleaning ² :	0,32 kg CO ₂

Natural gas incineration⁴:

Based on current operation at Pieter Pot

² Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions

SS

vn

0,25 kg CO₂/m3

/kg

/m3

³ RVO, 2017, National Energy Outlook

⁴ Fruergaard, T., Ekvall, T. & Astrup, T. (2009) Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions.

⁵ Only including emissions from sodium hydroxide production and water treatment

SCENARIO 1 [Fossil fuels] 2.600 containers/year 12,7 kg CO₂ /year

SCENARIO 2 [100% Renewable energy] 2.600 containers/year 0,6 kg CO2 /year⁵

PIETER POIT

CARBON FOOTPRINT COMPARISON

Compare carbon footprint of **Reusing glass jars** With **Recycling carton packaging**

Key takeaways

Reusing glass jars for 40 times¹ Saves 16 kg - 111 kg CO2 eq². Per household³, per year compared to recycling cardboard At current energy mix

¹ Milieu Centraal, NOS news, 24-05-2019 ²Glass of 500 grams, compared to cardboard of 15 - 40 grams ³Reference case of 2.600 products per household per year

Scope

ΙΝ

Emissions from material sourcing Emissions from packaging production, cleaning and recycling Emissions from transport of packaging, with and without product

OUT Emissions from transport of food from supplier to distribution center¹ Emissions from production of food² Carbon sequestration from forests³

¹ Assuming similar emissions from transport of bulk and single packaged products from supplier to distribution center ² Assuming similar production process and emissions for bulk and single packaged product ³See slide 5 for a detailed explanation

Sequestration

Background

Forests capture and store carbon – this process is called sequestration Some carbon footprint analysis assign this carbon sink to cardboard products, with a reference forest of zero sequestration¹.

This comparison excludes carbon sequestration To assign carbon sequestration to cardboard would be misleading, since 1) these product have a significantly shorter carbon decay time compared to the natural decomposition of biomass in forests²³⁴ 2) managed forests may contain 25%-50% less carbon than natural forests⁵.

- Swedish Environmental Research Institute, 2010, Carbon Footprint of Cartons in Europe.
- 2. Natural decomposition of biomass takes over 200 years to decay 95% of the carbon, while cardboard products take less than 8 years to decay 95% of the carbon.
- 3. Klein, D. Hollerl, S., Blaschke, M. and Schulz, C. 2013, The Contribution of Managed and Unmanaged Forests to Climate Change Mitigation—A Model Approach at Stand Level for the Main Tree Species in Bavaria
- 4. Pukkala, T. 2017, Does management improve the carbon balance of forestry?
- 5. Ontario Ministry of Natural Resources, 2010, The effects of forest management on carbon storage in Ontario's forests.

Reference cdse

One household using 50 Products per week 2.600 Products per year

Package material per product 15 - 40 grams¹ of White Lined Chipboard carton² 500 grams of glass³ 1.000 grams of product

¹ A range of weights is taken to compare the impact for different products

²Cardboard without plastic layers

³ Average weight of current glass packaging (1L), assuming all type of products can be stored in this size

Lifecycle

Reuse glass jars

Typical reuse in beer breweries: 40 times¹ Recycling times: indefinitely²

- ² Victoria State Government, 2013
- ³ Distance from mine:100 km
- ⁴ Distance from production facility:100 km
- ⁵ Distance from distribution center: 100 km

Sourcing Sourcing the raw materials for glass Emits 0,07 kg CO_2 eq. per kg glass¹. At feedstock mix with 50% recycled cullets².

¹ Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions ² EU Average, EU, 2010, JRC Reference Report, Best Available Techniques (BAT) Reference Document for the Manufacture of Glass

Production Production of glass with conventional fossil fuels Emits 0,52 kg CO2 eq./kg glass¹

¹Ecofys, 2018, Methodology for the free allocation of emission allowances in the EU ETS

Recycling Recycling glass to cullets requires 14 kWh/t glass¹ which Emits 0,001 kg CO2 eq./kg glass

¹Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions 2 Given a fully electric recycling process

Washing one glass container Emits 4,9g CO₂ eq¹. Including carbon footprint of washing, drying, water and chemicals.

¹See Appendix for detailed calculations

Transport Transport 2.600 products per year **Emits 24,8 kg CO_2 eq^1.** Using diesel truck

¹See Appendix for calculation

Reference case Reusing 2.600 glass jars Emits 56,5 kg CO₂ eq. Per year.

Recycle cardboard Recycling times:5-7¹

- ¹ Pro Carton, Carbon Footprint
- ² Distance to Dutch production facility: 100km
- ³ Distance from distribution center: 100 km
- ⁴Swedish Environmental Research Institute, 2010, Carbon Footprint of Carton in Europe
- ⁵ Assuming recycling and production is done at one location
- ⁶ Transport from recycling plant to landfill/incinerator is neglected

Cardbodrd

Production Production and recycling of cardboard Emits 0,96 kg CO₂ eq./kg cardboard¹²

¹ Swedish Environmental Research Institute, 2010, Carbon Footprint of Carton in Europe ² Including emissions from transport of raw materials

<u>Cardboard</u>

Transport

Transport of 2.600 products per year **Emits 16,6 kg – 17,7 kg CO_2 eq^1.** Using diesel trucks.

RECYCLING⁵

<u>Cordboord</u>

Incineration Incinerating end-of-life cardboard Emits 1,1 kg CO₂ eq/kg cardboard¹. 16% of the cardboard ends here¹.

Landfill Landfill of end-of-life cardboard Emits 1,3 kg CO2 eq/kg cardboard¹. 24% of the cardboard ends here¹

¹ Swedish Environmental Research Institute, 2010, Carbon Footprint of Carton in Europe

be

Cardboard Using 2.600 cardboard containers Emits 73 kg - 168 kg CO₂ eq. Per year.

Gass versus cardboard

Reusing glass jars for 40 times¹ Saves 16 kg – 111 kg CO2 eq. Per household², per year compared to recycling cardboard At current energy mix

¹ Glass of 500 grams, compared to cardboard of 15 - 40 grams ²Reference case of 2.600 products per household per year

Reusable glass saves on average 64 kg CO₂ per year, per household* compared to cardboard packaging

*Based on 50 products per week, at current energy mix

Reusable glass saves on average 0,3% CO₂ per year, per household* compared to cardboard packaging

*Based on 50 products per week, at current energy mix Average carbon footprint per capita of 11.500 kg CO_2 eq./year [EEA 2016] household size 2.2

ronsport

Volume: 80 m³ Maximum payload: 25t Emissions¹: 62-gram CO₂/ton-km

GLASS

Ship raw material ³ for g	lass production	
Raw material ² :	1,2 kg/kg glass	
Total mass:	25†	65 COI
Amount of containe	ers: 41.666	– times
Distance:	100 km	0,2 kg
Emissions:	129 kg CO ₂	
Relative emissions:	$3,1 \text{ g CO}_2/\text{container}$	
Ship glass retrieval for r	ecycling	
Weight per containe	er: 0,5 kg	
Total mass:	25†	65 COI
Amount of containe	ers: 50.000	– times
Distance:	100 km	0,2 kg
Emissions:	155 kg CO ₂	
Relative emissions:	3,1 g CO ₂ /container	

¹ ECTA, 2011, Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations
² Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions
³ Includes both raw materials and recycled cullets. Assumes that recycle plant is at the same location as the production facility

ontainers/year at reuse of 40 g CO₂ /year

ontainers/year at reuse of 40 g CO₂ /year

Transport

Volume: 80 m³ Maximum payload: 25t Emissions¹: 62-gram CO₂/ton-km

GLASS

Ship empty glass conto	iners to warehouse	Г
Weight per containe	er: 0.5 kg	
Total mass:	25†	65 cor
Amount of containe	ers: 50.000	– times
Distance:	100 km	0,2 kg
Emissions:	155 kg CO ₂	
Relative emissions:	$3.1 \text{ g CO}_2/\text{container}$	
Ship filled glass contair	ners to customers	
Weight per containe	er: 1.5 kg	
Total mass:	25†	
Amount of containe	ers: 16.666	2.600
Distance:	100 km	24 kg
Emissions :	155 kg CO ₂	
Relative emissions :	$0.93 \text{ g CO}_2/\text{container}$	

ontainers/year at reuse of 40 CO_2 /year

containers/year CO_2 /year

reinsport

Volume: 80 m³ Maximum payload: 25t Emissions¹: 62-gram CO₂/ton-km

CARDBOARD

Empty cardboard containers

	Weight per container:	0,015 - 0,035 kg
	Total mass:	12†
	Amount of containers:	80.000 - 62.500
	Distance:	100 km
	Emissions :	74 - 232 kg CO2
	Relative emissions: 0,1 –	0,37 g CO2/container
ill	ed glass containers	
	Weight per container:	1.005-1.06 kg
	Total mass:	25†
	Amount of containers:	23.584 - 24.875
	Distance:	100 km
	Emissions :	155 kg CO ₂
	Relative emissions : 6,29 -	- 6,45 g CO_2 /container

¹ ECTA, 2011, Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations

2.600 containers/year 16,6 – 17,7 kg CO₂ /year

EMPTY 15 – 40 gram 0,1L (compressed)

Containers/wash: 9¹

Washing

GLASS

Variables	
Electricity consumption ² :	40 kWh/t gla
Natural gas consumption (drying) ^{2:}	25 m3/t glass
Soda hydroxide consumption ¹ : 0	,9 g/wash
Water consumption per wash ¹ : 3	,1 L/wash
Emissions	
Electricity ³ :	77 g CO ₂ /kW
Soda hydroxide production ² :	1,12 kg CO ₂
Water production and cleaning ² :	0,32 kg CO ₂

Natural gas incineration⁴:

vn /kg /m3 0,25 kg CO₂/m3

Based on current operation at Pieter Pot

² Larsen, A., Merrild, H. and Christenen, T., 2009, Recycling of glass: accounting of greenhouse gases and global warming contributions

SS

³ RVO, 2017, National Energy Outlook

⁴ Fruergaard, T., Ekvall, T. & Astrup, T. (2009) Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions. ⁵ Only including emissions from sodium hydroxide production and water treatment

SCENARIO 1 [Fossil fuels] 2.600 containers/year 12,7 kg CO₂ /year

SCENARIO 2 [100% Renewable energy] 2.600 containers/year 0,6 kg CO2 /year⁵