

USER MANUAL
v1.2.1

Please read this manual carefully before using the software.

Using headphones requires responsible listening!

Last updated: October 2017
Copyright © 2017 by Dear Reality UG

All Rights Reserved

1

Quick Start Guide

1. Import

- Import the dearVR Asset to your project.

For details on how to import a unitypackage refer to Chapter 2.2.

2. Setup

- In Unity AudioManager set Spatializer Plugin to dearVR Engine.

Go to menu bar Edit -> Project Setting -> Audio -> Spatializer Plugin.

3. Listen

- Run the dearVR Demo Scene.

Alternatively:

- Add DearVRManager component to a game object in your scene.

- Create a new game object and add the DearVRSource component.

 Note: In the Demo Scene move with WASD and rotate with mouse down. You can

 change a room preset or any other parameter on a DearVRSource anytime. Press

 keys “R” and “T” to switch presets and keys “F” and “G” to switch audioclip.

Using dearVR Reverb Sends

To illustrate how to use dearVR Reverb Sends enable dearVRSource_Send object

(and disable dearVRSource_internal) in the dearVR Demo Scene.

1. Create an Audio Mixer and add a new group (e.g. name it Reverb Bus 1).

2. Right-click on that group, add effect at top and select dearVR Reverb.

Repeat Steps 1. & 2. for more groups and Reverb Plugin instances (i.e. using

multiple Reverb Groups for different room presets).

3. Select the dearVR Reverb Plugin, choose a room preset (in the Inspector Window)

and set the Reverb ID between 1 and 100!

IMPORTANT: Each dearVR Reverb Plugin needs a unique Reverb ID!

2

4. For each dearVRSource set INTERNAL REVERB to OFF. Use SIZE to set the

numbers (size) of dearVR Reverb Plugins you want to address with the audio

source.

Note: Select the same room preset for a source object as for the main Reverb Plugin

to use the corresponding early reflections.

5. Set Reverb ID(s) and Send-Level(s). The Reverb ID(s) determines the Reverb

Plugins the selected source object sends signal to.

Note: SEND determines the individual Send Level to a Reverb Plugin while REVRB

LEVEL (in the LEVELS Section) acts as a Master Send Fader for all Reverb Groups

(if using multiple Reverb Groups).

6. For each dearVR Source set the AudioSources Output to Audio Mixer Master.

WARNING: Do not send the AudioSources output to the Reverb Bus!

Otherwise the binaural signal gets processed by the dearVR Reverb again!

Updating dearVR within an existing project:

OSX:

Just import the new dearVR Asset and restart Unity.

WINDOWS:

1. Close Unity

2. Use the Windows Explorer to delete the file AudioPluginDearVR.dll in your

projects folder Assets/Plugins/x86_64 (or x86, depending on your system).

3. Open your Unity Project

4. Import the new dearVR Asset.

5. Restart Unity.

Note: Not following these steps leads to the warning "Copying file failed" because

AudioPluginDearVR.dll is still loaded in the Unity Editor.

3

Table of Contents

1. Introduction...4

 1.1 About 3D Audio .. 4

 1.2 dearVR Audio Reality Engine ... 4

 1.3 Version .. 5

2. Installation .. 6

 2.1 Requirements .. 6

 2.2 Importing dearVR .. 6

 2.3 The dearVR Folders ... 7

 2.4 Choose dearVR as your default Spatializer Plugin ... 8

 2.5 Getting Started .. 9

3. Overview dearVR Engine.. 10

 3.1 Position .. 10

 3.2 Reflections .. 10

 3.3 Reverb .. 11

4. dearVR Components ... 12

 4.1 dearVR Source .. 12

 4.1.1 Reverb .. 13

 4.1.1.1 Reverb Sends ... 14

 4.1.2 Levels ... 15

 4.1.3 Settings .. 15

 4.1.4 Occlusion ... 17

 4.1.4 Obstruction ... 18

 4.1.5 Performance Mode !!!!!!!!!!!!!!!!!!!!!!!!19

 4.1.6 Audio Source .. 20

 4.2 dearVR Manager .. 21

 4.3 dearVR Reverb (Unity Audio Mixer Plugin) .. 22

5. Preset List ... 26

6. dearVR API ... 28

7. Mobile Development .. 32

8. Troubleshooting ... 33

9. Changelog .. 34

10. Appendix ... 36

4

1.Introduction

Thank you for purchasing our dearVR Plugin for Unity and welcome to the next step of

immersive audio production. With the dearVR audio reality engine you are able to design

deep auditory worlds and fantastic sound experience within Unity for all common platforms.

This manual will help you understand the dearVR Plugin and how to use it in your projects.

Important Note:

dearVR is a 3D Audio technology for headphones. Any kind or brand will do, but without a

headphone it won`t work properly. Please check to have your left and right ear pieces

properly placed and let’s get started!

Have fun!

1.1 About 3D Audio

3D Audio is a technology that simulates the human spatial hearing via headphones. If you

listen to common stereo audio with headphones, the perception of all sound sources is

located inside your head - between your left and your right ear. With 3D Audio you get the

sound outside of your head where it belongs. A sound appears to emanate from a specific

point - anywhere within a full 360° three-dimensional sphere.

Illustration 1.1 - Full 360 degree 3D audio sphere

5

This gives you the ability to position a sound object all around the listener - behind, in front

of, to the right or to the left of and even below or above.

The quality of a 3D Audio rendering process depends on many factors - primarily the shape

of our body, our head and our ears. That’s why a mix with 3D Audio can sound different to

different people. Our uniqueness as human beings is actually a limitation for practical 3D

Audio technology.

Another typical problem that occurs with binaural 3D Audio is the front-back confusion. Our

natural hearing uses small micro-movements of our head to optimize the localisation of a

sound source. The head tracking technology, which is part of virtual reality devices, offers a

solution to this problem.

Binaural 3D Audio is not made for listening via stereo speakers. Although in general the

playback is possible, you will have to face strong colorations of the sound depending on your

playback system. The reason is crosstalk, meaning a large portion of the left speaker signal

will also go to the right ear of the listener. Similarly a large portion of the right speaker signal

will go to the left ear of the listener. With headphones this is different: both the left and the

right channel signal reaches its respective ear.

1.2 dearVR Audio Reality Engine

We call our dearVR technology an audio reality engine because it can produce stunningly

realistic auditory worlds, comparable to our natural listening. For this, we listened back to our

modelling technology over and over again and tweaked every parameter with our own ears.

The acoustic modelling of an environment needs more than just 3D spatial location. It

combines distance, motion, reflections and reverb to complete a simulation of an acoustic

scene.

All these phenomena can now be utilized for your sound design within Unity with just one

Plugin: The dearVR audio reality engine!

1.3 Version

This manual is for dearVR Version 1.2.1

6

2. Installation

This chapter describes how to setup your dearVR Unity Asset. It assumes that you are using

Unity’s built-in audio engine. If you are using a third-party audio middleware like FMOD

Studio or Wwise, please refer to additional information on our website.

2.1 Requirements

- Unity 5.2 or higher.

- The dearVR.unitypackage from the Asset Store.

2.2 Importing dearVR

Import the complete dearVR Plugin via the Asset Store into your project.

Illustration 2.2 - Import Asset

7

2.3 The dearVR folders

After import three new folders appear inside your project:

1. dearVR folder

2. Plugins folder

3. StreamingAssets folder

Illustration 2.3.1 - Imported folders in the Project Window

- The dearVR folder contains:

 a) dearVR Demo - demo scene to get a first impression of the Plugin.

 b) Components - dearVR Manager and dearVRSource.

 Note: dearVREditor is an internal system component.

- The Plugins folder contains the native plugins for OSX, Windows, iOS and Android.

- The StreamingAssets folder contains necessary data files of the dearVR Engine.

Dynamically linked libraries (DLLs)

The dearVR Asset contains DLLs instead of scripts. Usually, scripts in Unity are kept in a

project as source files and compiled whenever the source changes. However, it is also

possible to compile a script to a dynamically linked library (DLL) using an external

compiler. The resulting DLL can then be added to the project and the classes it contains can

be attached to objects just like normal scripts.

8

You can attach the dearVRSource or dearVRManager component to a game object just like

a script. The dearVR_Editor component is an internal system component for the dearvR

engine. Please don`t change the components platform import settings.

For more information about DLLs please refer to the Unity manual:

http://docs.unity3d.com/Manual/UsingDLL.html

Illustration 2.3.2 – Folder content dearVR Plugin

2.4 Choose dearVR as your default Spatializer Plugin

The dearVR Engine uses the Unity Spatializer SDK - introduced with Unity 5.2. as an

extension of the native audio SDK and built for third-party 3D Audio solutions like dearVR.

To use the Plugin you have to set it as the default tool for spatialization in Unity.

- Go to menu bar Edit -> Project Setting -> Audio -> Spatializer Plugin.

- Within the Unity Audio Manager you will find the Spatializer Plugin Menu.

- Choose dearVR Engine.

9

Illustration 2.4 - Unity AudioManager Spatializer Plugin

Note:

- 24000 Hz / 44100 Hz / 48000 Hz Sample Rate are supported.

- Performance load for spatialization depends on DSP Buffer Size Settings.

2.5 Getting Started

How to configure a new scene:

1. Add the DearVRManager component to a game object in your scene.

2. Create a new game object and add the DearVRSource component. If the game object

doesn’t have an AudioSource yet, a new one is created automatically.

Done - that’s all!

IMPORTANT:

Audioclips for dearVR Source have to be a stereo file!

Convert mono files to stereo files with a third party tool before using as a dearVR Source.

10

3. Overview dearVR Engine

The dearVR Unity Asset is an audio reality processor, enabling you to virtualize many

different kinds of acoustic settings within your game with a great amount of realism.

The virtualisation of an acoustic environment with object based sound sources refers to

combining 3D spatial location cues with distance, motion, and ambience. All these parts are

needed to achieve a realistic simulation of an acoustic scene - far beyond simple 3D

positioning.

For this reason the dearVR Engine combines object based 3D positioning with real time

generated reflections depending on the room positioning and late diffuse reverberation.

The dearVR Plugin contains the following processing units:

1. Position

2. Reflections

3. Reverb

3.1 Position

The positional processing renders distance, listening angle and elevation relative to the

listener. Using the values provided by the Unity game engine, a mono audio track is

converted into a positional 3D Sound Object.

3.2 Reflections

A signal being reflected once or twice from parts of listening space - walls, ceilings and floor

- arrives shortly after the direct signal at the listener’s position. Such early reflections can be

seen as a transition period before the reverberant field has built up.

First reflections are responsible for our impression of the general character and the size of a

room. In binaural rendering they are of great importance for a realistic localisation and the

impression of sounds coming from outside of the head.

Early reflections can be modelled by considering acoustic boundaries as acoustic mirrors.

Depending on the listener’s position in a room and his distance to the boundaries, the time a

reflection takes to arrive at his ears varies. Reflections also vary depending on the position

of the sound source in the room.

11

The dearVR auralization generates reflection patterns depending on the listener’s position

and the sound source position. If the listener or a sound object moves, the reflections

properties are recalculated in real-time.

3.3 Reverb

Reverb itself is an extremely complex reflection and diffusion pattern that builds up to a

dense thickness from the moment you hear the original dry sound. For the dearVR Engine

we captured the acoustic characteristics of different rooms or locations and created over 40

room presets. You can easily adapt these room characteristics to a specific scene by

changing the size or applying a reverb filter.

12

4. dearVR Components

In this chapter we take a look at the three main components you will find inside the dearVR

Asset and their corresponding parameters. Any parameter can be changed in real-time

during playback.

1. dearVRSource component.

Add this component to every Audio Object in your scene.

2. dearVR Manager component.

One instance of the dearVR Manager must exist in every scene.

3. dearVR Reverb Plugin

Add this native audio plugin in a mixer group to create a spatialization reverb bus.

4.1 dearVRSource

For binaural processing each Unity AudioSource requires the dearVRSource component.

Once you have added the component to a game object, an audio source component will be

generated automatically if it does not already exist.

There are 4 main parameter sections within the inspector window of a dearVRSource

component:

- Reverb

- Levels

- Settings

- Occlusion

Note:

Don’t mix binaural with non-binaural audio! If you combine conventional stereo or mono

audio playback with 3D audio objects, you will wreck immersion and spatialization.

13

4.1.1 Reverb

Illustration 4.1.1 – Reverb parameter

Room Preset Menu to select different room presets. (Refer to 5.6 Preset List)

Note: The larger a room, the longer the reverb – and the more
processing power needed!

Internal Reverb Select whether to use internal reverb processing on the Audio
Source or a Reverb Send to address a dearVR Reverb plugin
instance in the Unity Audio Mixer.

Default: ON

Note: Internal Reverb processing needs far more processing power.

Reverb Filter A low-pass filter applied to the reverb signal. Set frequency values
between 500 Hz to 19999 Hz.
Default slider position is 20000 Hz for internal preset value!
Note: Each preset has an optimized internal value for the reverb
filter – used if slider is set to 20000 Hz.

Room Size Factor to decrease room size.
Values (50% ! 100%)

Note: Parameter is disabled if using Reverb Groups.

Reflection Filter

A low-pass filter applied to the reflection signal. Set frequency
values between 500Hz to 19999 Hz.
Default slider position is 20000 Hz for internal preset value!
Note: Each preset has an optimized internal value for the reverb
filter – used if slider is set to 20000 Hz.

14

4.1.1.1 Reverb Sends

We recommend using reverb sends for each audio source. This way, various audio sources

with different positions and reflections can share the same reverb to reduce processing load.

Note: Reverb Sends enable crossfading between different reverbs – e.g. needed for sound

sources moving from one room to another.

Illustration 4.1.1.1 – Reverb Sends

Internal Reverb OFF

Reverb Sends
Size

Sets the number of Reverb Sends.

Reverb ID Enter a Reverb ID for each dearVR Reverb Plugin you want to
target with the Reverb Send.
(A unique Reverb ID has to be defined in each dearVR Reverb
Plugin instance).

Note: Create a dearVR Reverb Plugin in a Mixer Group within the
Unity Audio Mixer.

Send Level Sets the audio signal level send internally to the dearVR Reverb
Plugin.

Note: All Reverb Send levels are affected by the Reverb Level
Fader in the Levels section (refer to 4.1.2).

15

4.1.2 Levels

Illustration 4.1.2 – Levels

Gain Level Sets the overall output gain (-96dB ! +24dB)

Direct Level

Sets the level of the audio source direct signal - independent of
reflections and reverb. (-96dB ! +24dB)

Note: Values for direct, reflection and reverb levels influence the
distance perception.

Reflection Level Sets the overall gain of the reflections. (-96dB ! +24dB)

Reverb Level Sets the overall gain of the reverb signal. (-96dB ! +24dB)

Note: This level affects all Reverb Sends

4.1.3 Settings

Illustration 4.1.3 – Settings

16

Auralization

Activates real-time processing to generate first reflections
corresponding to the listener and sound object position relative to
wall distances and reflection boundaries.

Note: If room geometry is not set manually or analysed with the
real-time room analyser (for details see 4.2 dearVRManager),
geometry is determined by the active room preset.

Bass Boost Enable bass enhancement (On / Off)

Default: OFF

Unity Distance
Graph

Activates Unity Distance Attenuation in the Audio Source 3D Sound
Settings (refer to 4.1.5.)

Default: OFF

Note: Maximum distance value for the internal dearVR processing
is set to 28 meters. You can modify this value by using the distance
correction parameter.

Input Channel Sets dearVR input signal from the stereo audio clip.
Left channel (-1), Right channel (+1) or a mix (-1 < x > +1).

Default: (-1) Left channel

Important:
A stereo file is required for dearVR processing!

Distance
Correction

Factor to scale the internal dearVR distance processing according
to the given distance in the unity scene (0.01 ! 10.0).

Default: 1.0

Note:
Value > 1.0 lead to an increased distance perception.
Value < 1.0 lead to an decreased distance perception

Phi Angle
Correction

Factor to scale the internal dearVR horizontal-angle processing,
according to the given phi angle in the unity scene (0.2 ! 4.0)

Default: 1.0

Note:
Value < 1.0 results in more sideways position perception.
Value > 1.0 results in more centered position perception.

Bypass Plugin Bypass dearVR processing.

17

4.1.4 Occlusion

Acoustic occlusion describes the alteration within a sound field if the sonic wave is

completely blocked, for example by a wall, a closed window or door. With the parameter

occlusion level, the acoustic insulation of a wall, window or door can be simulated.

TIP: Occlusion alters direct signal and reverberation signal of an audio source.

Note: Occlusion is always measured between audio listener and audio source.

Illustration 4.1.4 – Occlusion

Occlusion Objects

Select the layer of objects that lead to occlusion.

Occlusion

Sets the level of occlusion if a sound source is occluded and

blocked by wall, window or door (0.0 ! 1.0).

Default: 0.6

Occlusion Update

Time

Set the time (sec.) between updating occlusion detection (0.1 s !

5.0 s).

Default: 0.2 s

Note: Smaller values lead to increased performance load!

Debug Occlusion

(Gizmos)

Visualizes raycasting between listener and sound source in the

scene window.

(green ray => no occlusion) (red ray => occlusion)

Force Occlusion

Occlusion is always processed.

18

4.1.5 Obstruction

Acoustic obstruction describes the alteration within a sound field if the direct sonic wave of a

sound source is blocked by another object. Unlike occlusion, the obstructed sound source is

in the same room with the listener.

TIP: Obstruction mainly influences the direct signal of an audio source. The reverberation

signal gets less influenced, if an object is obstructed.

Note: Obstruction is always measured between audio listener and audio source.

Illustration 4.1.5 – Obstruction

Obstruction Objects Select the layer of objects that lead to obstruction.

Obstruction

Sets the level of obstruction if a sound source is obstructed by

another object (0.0 ! 1.0).

Default: 0.6

Obstruction Update

Time

Set the time (sec.) between updating obstruction detection (0.1 s

! 5.0 s).

Default: 0.2 s

Note: Smaller values lead to increased performance load!

Debug Obstruction

(Gizmos)

Visualizes raycasting between listener and sound source in the

scene window.

(green ray => no obstruction) (red ray => obstruction)

Force Obstruction

Obstruction is always processed.

19

4.1.6 Performance Mode

The Performance Mode bypasses processing of spatialized audio sources if they are in idle

state. Usually all audio sources with the Spatialize checkbox enabled will be processed by

Unity, no matter if they are playing or not. The Performance Mode is an important feature to

avoid unnecessary processing load.

Important: In Performance Mode play audio sources only with DearVRPlay() or

DearVRPlayOneShot (AudioClip) or DearVRPlayOnAwake flag.

WARNING: Do not use Play() or PlayOnAwake flag in Performace Mode!

Illustration 4.1.6 – Performance Mode

dearVR Play

Performance Mode

Activates Performance Mode.

Spatial audio sources are NOT processed during idle state.

Note: Unity usually processes all audio sources with
spatialization on – even if they aren’t playing.

DearVRPlayOnAwake

PlayOnAwake flag for the Performance Mode.

Note: Never activate the audio sources PlayOnAwake in
Performance Mode.

Reverb Tail After Stop

Set length (sec.) of processed Reverb Tail after audio source

stop.

Note: Only important if internal Reverb is active.

Processing Indicator

When lit green, processing is active

20

4.1.7 Audio Source

Some settings of the Audio Source component also affect the dearVR Settings. Not

mentioned settings act as usual in Unity.

For more information about Unity Audio Source settings refer to the Unity manual:

http://docs.unity3d.com/Manual/class-AudioSource.html

Spatialize Automatically set to ON if a dearVRSource component is added.

Bypass Effects /
Listener Effects /
Reverb Zones

These Settings don’t have any effect on the dearVR rendering.

Stereo Pan No effect

Spatial Blend Automatically set to 2D if a dearVRSource component is added.

Important:
Parameter has to be kept at 2D!

Reverb Zone Mix If Unity Distance Graph in dearVRSource enabled, slider or graph
control Reverb Level.

Doppler Level No effect (will be implemented in future updates)

Spread No effect

3D Sound Settings
Graph

Volume graph alters the Direct Level over distance.
Reverb Zone graph alters the Reverb Level over distance.

Note: If distance is farther than Max Distance value, the farthest
value is processed. Set Volume and ReverbZone to zero at Max
Distance to mute both for higher distances.

21

Illustration 4.1.7 – Audio Source Graph

4.2 dearVR Manager

The dearVR Manager component is mandatory in each scene or in a global root scene. It

defines global setting for the dearVR Engine.

Note: For details on how to use a global scene please refer to the unity manual.

http://docs.unity3d.com/Manual/MultiSceneEditing.html

Within the dearVR Manager you can set main parameters for auralization and room

analyser.

22

Illustration 4.2 – Dear VR Manager

Loudspeaker Mode Bypass the binaural rendering for all sources. Reflections and
Reverb processing are still active.

Note: Loudspeaker Mode enables you to switch from 3D Audio for
headphones to a loudspeaker compatible mix.
Distance attenuation, Reflection, and Reverb levels are still
maintained.

Room Analyzer Enable the real-time room analyzer to get scene geometry for
auralization. Detected values are shown in Set Global Room Geo
input boxes.

Note: Without room analyser or Set Global Room geometry active,
reflections are generated based on fixed values fitting the room
preset.

Room Boundaries Select which objects are analysed as room boundaries.

Analyser Update
Time

Set the Update-time (in seconds) between two raycasts.
(0.1 s ! 10.0 s)

Note: Faster Update-time lead to more performance load.

Debug Room
Analyser (Gizmos)

Visualise raycasting for room analyzer. Visible in Scene Window.

23

Note: Use to control the objects detected as room boundaries.

Set Global Room
Geometry

Enable to set Room Geometry manually.

Note: Set room geometry manually to the desired values.

UP / DOWN Listener’s distance to the ceiling / ground in meter.

FRONT / BACK Listener’s distance to the front / rear wall in meter.
Value modifies delay and level of reflexion from front / rear
direction.

LEFT / RIGHT Listener’s distance to the left or right wall in meter.
Value modifies delay and level of reflexion from left / right
direction.

4.3 dearVR Reverb (Unity Audio Mixer Plugin)

Reverb sends allow various audio sources with different positions and reflections to share

the same reverb. The signal of an audio source is sent to a dearVR reverb plugin instances

within the Unity Audio Mixer. This way, processing load is reduced by a multiple.

- Create an Audio Mixer and add a new group (e.g. name it Reverb Bus 1).

- Right-click on that group, add effect at top and select dearVR Reverb.

- Select the dearVR Reverb Plugin and set the Reverb ID between 1 and 100.

IMPORTANT: Each dearVR Reverb Plugin needs a unique Reverb ID!

- Choose room preset and adjust reverb parameter.

24

Illustration 4.3 – dearVR Reverb Audio Mixer Plugin

Room Preset Menu to select a Reverb Room preset. (Refer to 5.6 for Preset
List)

Reverb ID Set an ID for the Reverb Group

IMPORTANT:
Each dearVR Reverb Plugin needs a unique Reverb ID!

Gain Sets the output gain of the Reverb Plugin.

Note: Slider is Pre-Fader Reverb Group in Audio Mixer.

Reverb Sets the overall gain of the reverb signal. (-96dB ! +24dB)

Reverb LP A low-pass filter applied to the reverb signal.
Set frequency values between 500 Hz to 20000 Hz.

Note: Default values are set within each room preset.

Room Size Factor to decrease the Room Size.
Values (50% ! 100%)

25

Reverb Bass Boost Enable bass enhancement for reverb (On / Off)

Default: OFF

Bypass Bypass the processing to control reverb bus input.

Mute Stop the processing to safe performance.

26

5. Preset List

Note: The larger a room the longer the reverb – and the more performance is needed!

The Performance Level (1-10) illustrates the performance load. Level 10 needs the most

performance.

A. Rooms & Halls Performance
Level

1. Concert Hall 1 5

2. Concert Hall 2 5

3. Recording Hall Large 7

4. Recording Hall Small 4

5. Kings Hall 5

6. Cathedral 10

7. Church 5

8. Chapel 8

9. Room Large 5

10. Room Medium 4

11. Room Small 3

B. Postproduction Performance
Level

11. Office 1 2

12. Office 2 2

13. Studio Small 2

14. Conference Hall Small 3

15. Cellar 4

16. Empty Room 3

17. Living Room Small 2

18. Staircase 4

19 Corridor 5

27

20. Bathroom 3

21. Restroom 4

22. Car 1 1

23. Car 2 1

24. Booth 2

25. Cinema 2

26. Warehouse 10

27. Outdoor Street 5

28. Outdoor Alley 5

C. Musicproduction Performance
Level

29. Live Studio Room 5

30. Live Stage 7

31. Live Arena 7

32. Ambience Heavy 4

33. Ambience Plate 3

34. Ambience Medium 3

35. Ambience Small 2

36. Vocal Hall 1 7

37. Vocal Hall 2 7

38. Vocal Plate 8

39. Drum Room 1 6

40. Drum Room 2 6

41. Percussion Plate 5

42. Percussion Ambience 2

43. Acoustic Room 6

44. String Hall 8

45. String Plate 8

28

6. dearVR API

To control the dearVR properties via script see the following DearVRScriptLoad.cs example:

using UnityEngine;
using System.Collections;
using UnityEngine.Audio;
using DearVR;

public class DearVRScriptLoad : MonoBehaviour {

 [SerializeField] bool internalReverb = false;

 AudioSource myAudioSource;

 DearVRSource myDearVRSource;

 // Assign in Inspector or in script
 [SerializeField] AudioClip myAudioClip;

 [SerializeField] DearVRSource.RoomList roomSelection;

 [SerializeField] DearVRSerializedReverb[] reverbSendList;

 [SerializeField] AudioMixerGroup audioMixer;

 [SerializeField] bool performanceMode = false;

 [SerializeField] bool loop = false;

 [SerializeField] AudioClip clipForOneShot;

 void Awake () {

 // Create dearVR-Instance
 myDearVRSource = gameObject.AddComponent<DearVRSource>();

 myDearVRSource.PerformanceMode = performanceMode;

 // Assign and set AudioSource
 myAudioSource = myDearVRSource.currentAudioSource;

 myAudioSource.loop = loop;

 if (performanceMode) {
 myAudioSource.playOnAwake = false;

29

 }
 // Select Room Preset
 myDearVRSource.RoomPreset = roomSelection;

 // set audiomixer
 myAudioSource.outputAudioMixerGroup = audioMixer;

 myDearVRSource.InternalReverb = internalReverb;

 if (!internalReverb) {
 if (reverbSendList != null && reverbSendList.GetLength(0) > 0) {

 myDearVRSource.SetReverbSends(reverbSendList);

 }
 }

 // Set dearVR-Settings
 myDearVRSource.BassBoost = false;

 myDearVRSource.InputChannel = 1.0f;

 // Assign AudioClip
 if (myAudioClip) {

 myAudioSource.clip = myAudioClip;

 } else {

 Debug.LogWarning("DEARVR: AudioClip not assigned!");

 }
 }

 public void PlayStop(bool shouldPlay) {
 if (gameObject.activeSelf) {
 if (shouldPlay) {
 DearVRPlay ();
 } else {
 DearVRStop ();
 }
 }
 }

 void DearVRPlay() {
 if (performanceMode) {
 myDearVRSource.DearVRPlay();

30

 } else {
 myAudioSource.Play ();

 }
 }

 public void DearVRPlayOneShot() {
 if (performanceMode) {
 myDearVRSource.currentAudioSource.loop = false;
 myDearVRSource.DearVRPlayOneShot(clipForOneShot);

 }
 }

 void DearVRStop() {
 if (performanceMode) {
 myDearVRSource.DearVRStop();

 } else {
 myAudioSource.Stop ();

 }
 }

 public void Deactivate()
 {
 gameObject.SetActive(false);
 }

 public void Activate()
 {
 gameObject.SetActive(true);
 }

 public void PlayScript()
 {
 if (myAudioSource)
 {
 myAudioSource.Play();
 }
 }

 void Update() {
 if (myDearVRSource.RoomPreset != roomSelection) {
 myDearVRSource.RoomPreset = roomSelection;
 }

31

 if (myDearVRSource.InternalReverb && !internalReverb) {
 myDearVRSource.InternalReverb = false;

 if (reverbSendList != null && reverbSendList.GetLength(0) > 0) {

 myDearVRSource.SetReverbSends(reverbSendList);

 }
 }
 if (!myDearVRSource.InternalReverb && internalReverb) {
 myDearVRSource.InternalReverb = true;
 }
 }
}

32

7. Mobile Development

iOS & Android:

1. Default sample rate on mobile is 24000 Hz.

You may change sample rate to 44100 Hz or 48000 Hz for higher quality in trade of

performance.

To change sample rate go to menu bar Edit -> Project Setting -> Audio

2. Best practice is to use Reverb Sends and set DSP Buffer Size in the Audio Manager to

Best Performance.

iOS:

In your Xcode-Project open /Classes/UnityAppController.mm.

1. Add the line:

#include "../Libraries/Plugins/iOS/AudioPluginInterface.h"

2. In the same file replace line:

- (void)preStartUnity {}

with

 - (void)preStartUnity { UnityRegisterAudioPlugin(&UnityGetAudioEffectDefinitions) ; }

33

8. Troubleshooting

1. Audible dropouts in consequence of performance issues.
Please check DSP load in Stats Window. Reduce performance load by using Reverb Sends.

2. Heavy DSP-Processing load while only playing a few spatial audio sources.

Check if you have further (not playing) audio sources in the scene. Activate the Performace

Mode for each.

2. Performance Issues on Android Devices.

For android devices always set DSP Buffer Size in the Audio Manager to Best Performance.

3. Problems with playback speed or audio stuttering on mobile devices.

Audio stuttering or slow playback speed might occur as a result of performance issues.

Please be sure to follow the advices given to performance issues.

4. Function AudioMixerSnapshot.TransitionTo

Transitions between snapshots are a great feature within Unity. However it is not possible to

change parameter for Room Presets and Reverb IDs when using the function TransitionTo.

5. Distant sound source are still audible in reverb

Check Settings for Distance Attenuation. Using the unity distance attenuation (see 4.1.3 –

Settings) the Reverb Zone graph is responsible for the Reverb Level over distance (see

Illustration 4.1.6 – Audio Source Graph).

6. Xcode Bitcode

Xcode Bitcode option is not supported yet.

Disable Bitcode in Build Settings / Build Options.

Contact us to report bugs, errors or suggest features via support@dear-reality.com

Please include the following information:

- Plugin version

- Operating system

- Logfile / Console output

- Host software

34

9. Changelog

dearVR v1.2.1
- add API documentation

- update dearVR demo scene

- update DearVRScriptLoad.cs example

- disabled Bitcode for iOS

- Fixed minor bugs

dearVR v1.2.0
- Added Obstruction feature

- Optimized Performance for Internal Reverb

- Optimized Auralization

- Fixed minor bugs

dearVR v1.1.1
WARNING: Due to changes in Unity's (5.3.6+) internal audio engine, left and right channels

have to be summed. So the value 0.0 is fixed now and the parameter is depricated. We

recommend to recheck your mix and work with mono files from now on.

- Fixed input channel paremter to 0.0

- Fixed not playing sources after deactivation and reactivation

- Enabled mono audio clips for spatialization

- Enabled ENABLE_BITCODE for iOS

- Enabled DearVRPlayOnAwake on OnEnable

- Auto detecting Android architecture as ARMv7 now

dearVR v1.1

- Changed Distance Correction range to [0.01 m - 10 m]

- Changed Occlusion default to 0.6

- Changed Occlusion Update Intervall default to 0.2

- Changed Occlusion Raycast start to Audio Listener (was Camera before)

- Added Force Occlusion flag

- Added Mute (no processing) flag to Reverb Bus

- Added Performance-Mode: not processing spatial audio sources, that aren't playing.

35

- Added Reverb Tail after stop in Performance-Mode (only useful for Internal Reverb)

- Solved bug in Windows on performance overload

36

10. Appendix

Support

Please let us know if there are any questions concerning the dearVR Plugin.

If you need further assistance, please send an email to:

support@dear-reality.com

For the latest news concerning dearVR please visit our website at:

www.dearVR.com

 Dear Reality UG

 Oberbilker Allee 53

 40223 Düsseldorf

Caution

Using headphones requires responsible listening. Damage to hearing occurs when listen to

loud sounds with headphones over time.

- Set the volume control of your computer to a minimum when connecting your

headphones.

- Set the volume in a quiet environment and select the lowest volume at which you can

hear adequately.

- Do not turn the volume control to high, as this can cause permanent hearing

damage.

- Be aware that you can adapt to higher volume settings over time, not realizing that

the higher volume may be harmful to your hearing.

Dear Reality UG will in any event not be liable for any damage to hearing caused by loud
sounds.

dearVR Copyright © by Dear Reality UG. All rights reserved.

All trademarks or registered trademarks are the property of their respective owners.

No part of this documentation may be reproduced or transmitted in any form by any means,

electronic or mechanical, without permission in writing from Dear Reality UG.

