

USER MANUAL

v1.6

Please read this manual carefully before using the software.

Using headphones requires responsible listening!

Last updated: May 2020
Copyright © 2020 by Dear Reality GmbH
All Rights Reserved

Quick Start Guide

1. Import

- Import the dearVR Asset to your project.

For details on how to import a Unity package, refer to chapter 2.2.

2. Setup

- In Unity AudioManager, set Spatializer Plugin to dearVR Engine.

Go to menu bar: Edit -> Project Setting -> Audio -> Spatializer Plugin.

3. Listen

- Run the dearVR Demo Scene.

Alternatively:

- Add DearVR Manager component to a game object in your scene.

- Create a new game object and add the DearVR Source component.

 Note: In the Demo Scene, move with WASD and rotate with mouse down. You can

 change a room preset or any other parameter on a DearVR Source anytime. Press

 keys “R” and “T” to switch presets and keys “F” and “G” to switch audio clip.

Using dearVR Reverb Sends

To illustrate how to use dearVR Reverb Sends enable dearVRSource_Send object

(and disable dearVRSource_internal) in the dearVR Demo Scene.

1. Create an Audio Mixer and add a new group (e.g., name it Reverb Bus 1).

2. Right-click on that group, add effect at the top and select dearVR Reverb.

Please repeat Steps 1. & 2. for more groups and Reverb Plugin instances (i.e., using

multiple Reverb Groups for different room presets).

3. Select the dearVR Reverb Plugin, choose a room preset (in the Inspector Window),

and set the Reverb ID between 1 and 100!

IMPORTANT: Each dearVR Reverb Plugin needs a unique Reverb ID!

4. For each dearVR Source, set INTERNAL REVERB to OFF. Use SIZE to set the

numbers (size) of dearVR Reverb Plugins you want to address with the audio

source.

Note: Select the same room preset for a source object as for the main Reverb Plugin

to use the corresponding early reflections.

5. Set Reverb ID(s) and Send-Level(s). The Reverb ID(s) determines the Reverb

Plugins; the selected source object sends the signal.

Note: SEND determines the individual Send Level to a Reverb Plugin while REVERB

LEVEL (in the LEVELS Section) acts as a Master Send Fader for all Reverb Groups

(if using multiple Reverb Groups).

6. For each dearVR Source, set the AudioSources Output to Audio Mixer Master.

WARNING: Do not send the AudioSources output to the Reverb Bus!

Otherwise, the binaural signal gets processed by the dearVR Reverb again!

WARNING: UPDATING EXISTING PROJECTS FROM EARLIER THAN 1.5.0 TO v1.5.1

We replaced our closed managed plugin DLLs with the open C#-Source files in our plugin.

Due to this change, upgrading a project from earlier versions to v1.5.1 needs some more

adjustments than just importing the new unity package. Please see section 7 for more

information on how to upgrade your project.

Table of Contents

1	 Introduction ... 7	
1.1	 About binaural 3D Audio ... 7	
1.2	 dearVR audio reality engine .. 8	

2	 Installation ... 9	
2.1	 Requirements .. 9	
2.2	 Importing dearVR .. 9	
2.3	 The dearVR folders ... 10	
2.4	 Choose dearVR as your default Spatializer Plugin ... 11	
2.5	 Getting Started .. 12	

3	 Overview of dearVR Engine ... 13	
3.1	 Position .. 13	
3.2	 Reflections ... 13	
3.3	 Reverb ... 14	

4	 dearVR Components .. 15	
4.1	 dearVR Source .. 15	

4.1.1	 Reverb .. 16	
4.1.2	 Levels ... 18	
4.1.3	 Settings .. 19	
4.1.4	 Occlusion ... 20	
4.1.5	 Obstruction ... 21	
4.1.6	 Performance Mode ... 22	
4.1.7	 Audio Source .. 23	

4.2	 dearVR Manager ... 24	
4.3	 dearVR Reverb (Unity Audio Mixer Plugin) ... 27	

5	 Preset List ... 29	

6	 Building with dearVR Unity ... 32	

7	 Upgrading from earlier versions to v1.5.1 .. 33	
7.1	 Upgrading on macOS .. 33	
7.2	 Upgrading on Windows ... 34	

8	 Importing automations from dearVR SPATIAL CONNECT 36	
8.1	 Export object automations using SPATIAL CONNECT ... 36	
8.2	 Importing object automations in Unity ... 39	

9	 dearVR API .. 40	

10	 Troubleshooting ... 44	

11	 Changelog ... 46	

12	 Contact .. 48	

7

1 Introduction
Thank you for purchasing our dearVR PRO Plugin and welcome to the next step of

immersive audio production. With the dearVR 3D audio technology, you can design fantastic

new music mixes for headphones or create deep auditory worlds and sound design within

your DAW.

This manual helps you understand the dearVR PRO Plugin and how to use it in your

projects.

Important Note:

dearVR is a 3D audio technology for headphones. Any kind or brand will do, but if you set

the output format to “Binaural”, you have to use a headphone for the plugin to work correctly.

Please check that your left and right earpieces are suitably placed, and let’s get started!

Have fun!

1.1 About binaural 3D Audio

Binaural 3D Audio is a technology that simulates the human spatial hearing via headphones.

If you listen to common stereo audio with headphones, the perception of all sound sources is

located inside your head - between your left and your right ear. With 3D Audio, you get the

sound outside of your head where it belongs. A sound appears to emanate from a specific

point - anywhere within a full 360° three-dimensional sphere.

This perception gives you the ability to position a sound object all around the listener -

behind, in front of, to the right or the left of and even below or above.

The quality of a 3D Audio rendering process depends on many factors - primarily the shape

of our body, our head, and our ears. That’s why a mix with 3D Audio can sound different to

different people. Our uniqueness as human beings is a limitation for practical 3D Audio

technology.

Another typical problem that occurs with binaural 3D Audio is the front-back confusion. Our

natural hearing uses small micro-movements of our head to optimize the localization of a

sound source. The head tracking technology, which is part of virtual reality devices, offers a

solution to this problem.

8

Illustration 1.1 - Full 360-degree 3D audio sphere

Binaural 3D Audio is not made for listening via stereo speakers. Although, in general, the

playback is possible, you face strong colorations of the sound depending on your playback

system. The reason for this is crosstalk, meaning a large portion of the left speaker signal is

going to the right ear of the listener. Similarly, a large portion of the right speaker signal is

progressing to the left ear of the listener. With headphones, this is different: both the left and

the right channel signal reaches its respective ear.

1.2 dearVR audio reality engine

We call our dearVR technology an audio reality engine because it can produce stunningly

realistic auditory worlds, comparable to our natural listening. For this, we listened back to our

modelling technology over and over again and tweaked every parameter with our ears.

The acoustic modeling of an environment needs more than just a 3D spatial location. It

combines distance, motion, reflections, and reverb to complete a simulation of an acoustic

scene.

All these phenomena you can now use for your sound design with just one plugin:

The dearVR audio reality engine!

9

2 Installation
This chapter describes how to set up your dearVR Unity Asset. It assumes that you are

using Unity’s built-in audio engine. If you are using a third-party audio middleware like FMOD

Studio or Wwise, please refer to additional information on our website.

2.1 Requirements

- Unity 5.2 or higher.

- The dearVR.unitypackage from the Asset Store.

2.2 Importing dearVR

Import the complete dearVR Plugin via the Asset Store into your project.

Illustration 2.1 - Import Asset

10

2.3 The dearVR folders

After import three new folders appear inside your project:

- dearVR

- Plugins

- StreamingAssets

Illustration 2.2 - Imported folders in the Project Window

The dearVR folder contains:

 a) dearVR Demo - demo scene to get a first impression of the Plugin.

 b) Components - dearVR Manager and dearVR Source.

Note: dearVR_Editor is an internal system component.

The Plugins folder contains the native plugins for OSX, Windows, iOS, and Android, while

the StreamingAssets folder contains necessary data files for the dearVR Engine.

11

2.4 Choose dearVR as your default Spatializer Plugin

The dearVR Engine uses the Unity Spatializer SDK - introduced with Unity 5.2 as an

extension of the native audio SDK and built for third-party 3D Audio solutions like dearVR.

To use the plugin, you have to set it as the default tool for spatialization in Unity.

- Go to menu bar: Edit -> Project Setting -> Audio -> Spatializer Plugin.

- Within the Unity Audio Manager, you find the Spatializer Plugin Menu.

- Choose dearVR Engine.

Illustration 2.3 - Unity Audio Manager Spatializer Plugin

Note:

- 24000 Hz / 44100 Hz / 48000 Hz Sample Rate are supported.

- The performance load for spatialization depends on DSP Buffer Size Settings.

12

2.5 Getting Started

How to configure a new scene:

1. Add the DearVR Manager component to a game object in your scene.

2. Create a new game object and add the DearVR Source component. If the game object

doesn’t have an AudioSource yet, a new one is created automatically.

Done - that’s all!

13

3 Overview of dearVR Engine
The dearVR Unity Asset is an audio reality processor, enabling you to virtualize many

different kinds of acoustic settings within your game with a vast amount of realism. The

virtualization of an acoustic environment with object-based sound sources refers to

combining 3D spatial location cues with distance, motion, and ambiance. All these parts are

needed to achieve a realistic simulation of an acoustic scene - far beyond simple 3D

positioning. For this reason, the dearVR Engine combines object-based 3D positioning with

real-time generated reflections depending on the room positioning and late diffuse

reverberation.

The dearVR Plugin contains the following processing units:

1. Position

2. Reflections

3. Reverb

3.1 Position

The positional processing renders distance, listening angle, and elevation relative to the

listener. Using the values provided by the Unity game engine, it converts a mono audio track

into a positional 3D Sound Object.

3.2 Reflections

A signal being reflected once or twice from parts of listening space - walls, ceilings, and floor

- arrives shortly after the direct signal at the listener’s position. Such early reflections can be

seen as a transition period before the reverberant field has built up.

First reflections are responsible for our impression of the general character and the size of a

room. In binaural rendering, they are of great importance for a realistic localization and the

impression of sounds coming from outside of the head.

You can model early reflections by considering acoustic boundaries as acoustic mirrors.

Depending on the listener’s position in a room, and his distance to the boundaries, the time a

14

reflection takes to arrive at his ears varies. Reflections also vary depending on the position

of the sound source in the room.

The dearVR auralization generates reflection patterns depending on the listener’s position

and the sound source position. If the listener or a sound object moves, the engine

recalculates the reflections’ properties in real-time.

3.3 Reverb

Reverb itself is an extremely complex reflection and diffusion pattern that builds up to a

dense thickness from the moment you hear the original dry sound. For the dearVR Engine,

we captured the acoustic characteristics of different rooms and locations and created over

40 room presets. You can quickly adapt these room characteristics to a specific scene by

changing the size or applying a reverb filter.

15

4 dearVR Components
In this chapter, we take a look at the three main components you find inside the dearVR

Asset and their corresponding parameters. You can change any parameter in real-time

during playback.

1. dearVR Source component.

Add this component to every Audio Object in your scene.

2. dearVR Manager component.

One instance of the dearVR Manager must exist in every scene.

3. dearVR Reverb Plugin

Add this native audio plugin in a mixer group to create a spatialization reverb bus.

4.1 dearVR Source

For binaural processing, each Unity AudioSource requires the dearVR Source component.

Once you have added the component to a game object, it generates an audio source

component automatically if it does not already exist.

There are five main parameter sections within the inspector window of a dearVR Source

component: Reverb, Levels, Settings, Occlusion, and Obstruction.

Tip

Don’t mix binaural with non-binaural audio! If you combine conventional stereo or mono

audio playback with 3D audio objects, you wreck immersion and spatialization.

16

4.1.1 Reverb

Illustration 4.1 - Reverb parameters

Room Preset Menu to select different room presets. (Refer to 5.6 Preset List)

Note: The more extensive a room, the longer the reverb – and the
more processing power needed!

Internal Reverb Select whether to use internal reverb processing on the Audio
Source or a Reverb Send to address a dearVR Reverb plugin
instance in the Unity Audio Mixer.

Default: ON

Note: Internal Reverb processing needs far more processing power.

Reverb Filter A low-pass filter applied to the reverb signal. Set frequency values
between 500 Hz to 19999 Hz. The default slider position is 20000
Hz which we use for an optimized internal value for the reverb filter!

Room Size Factor to decrease room size.
Values (50% ⇔ 100%)

Note: Parameter is disabled if using Reverb Groups.

Reflection Filter

A low-pass filter applied to the reflection signal—Set frequency
values between 500Hz to 19999 Hz. The default slider position is
20000 Hz, which we use for an optimized internal value for the
reverb filter!

17

Reverb Sends:

We recommend using reverb sends for each audio source. This way, various audio sources

with different positions and reflections can share the same reverb to reduce processing load.

Reverb Sends also enable crossfading between different reverbs – e.g., needed for sound

sources moving from one room to another.

Illustration 4.2 - Reverb sends

Internal Reverb OFF

Reverb Sends
Size

Sets the number of Reverb Sends.

Reverb ID Enter a Reverb ID for each dearVR Reverb Plugin you want to
target with the Reverb Send.
(You have to define a unique Reverb ID in each dearVR Reverb
Plugin instance).

Note: Create a dearVR Reverb Plugin in a Mixer Group within the
Unity Audio Mixer.

Send Level Sets the audio signal level send internally to the dearVR Reverb
Plugin.

Note: All Reverb Send levels are affected by the Reverb Level
Fader in the Levels section (refer to 4.1.2).

18

4.1.2 Levels

Illustration 4.3 - Levels

Master Gain Sets the overall output gain (-96dB ⇔ +24dB)

Direct Level

Sets the level of the audio source direct signal - independent of
reflections and reverb. (-96dB ⇔ +24dB)

Reflection Level Sets the overall gain of the reflections. (-96dB ⇔ +24dB)

Reverb Level Sets the overall gain of the reverb signal. (-96dB ⇔ +24dB)

Note: This level affects all Reverb Sends

Tip

Values for direct, reflection, and reverb levels influence the distance perception.

19

4.1.3 Settings

Illustration 4.4 - Settings

Auralization

Activates real-time processing to generate first reflections
corresponding to the listener and sound object position relative to
wall distances and reflection boundaries.

Note: If room geometry is not set manually or analyzed with the
real-time room analyzer (for details, see chapter 4.2), the
operating room preset determines the geometry.

Bass Boost Enable bass enhancement (On / Off)

Default: OFF

Unity Distance
Graph

Activates Unity Distance Attenuation in the Audio Source 3D
Sound Settings (refer to 4.1.7)

Default: OFF

Note: The maximum distance value for the internal dearVR
processing is set to 28 meters. You can modify this value by
using the distance correction parameter.

Distance Correction Factor to scale the internal dearVR distance processing according
to the given distance in the unity scene (0.01 ⇔ 10.0).

Default: 1.0

Note:
Value > 1.0 leads to increased distance perception.
Value < 1.0 leads to decreased distance perception.

Phi Angle
Correction

Factor to scale the internal dearVR horizontal-angle processing,
according to the given phi angle in the unity scene (0.2 ⇔ 4.0)

Default: 1.0

Note:
Value < 1.0 results in more sideways position perception.
Value > 1.0 results in more centred position perception.

Bypass Plugin Bypass dearVR processing.

20

4.1.4 Occlusion

Acoustic occlusion describes the alteration within a sound field if the sonic wave is

completely blocked, for example, by a wall, a closed window or door. With the parameter

occlusion level, you can simulate the acoustic insulation of a wall, window, or door.

Occlusion alters direct signal and reverberation signal of an audio source and is always

measured between the audio listener and the audio source.

Illustration 4.5 - Occlusion

Occlusion

Objects

Select the layer of objects that lead to occlusion.

Occlusion

Sets the level of occlusion if a sound source is occluded and blocked

by wall, window, or door (0.0 ⇔ 1.0).

Default: 0.6

Occlusion Update

Time

Set the time (sec.) between updating occlusion detection

(0.1 s ⇔ 5.0 s).

Default: 0.2 s

Note: Smaller values lead to increased performance load!

Debug Occlusion

(Gizmos)

Visualizes ray casting between listener and sound source in the

scene window.

(green ray => no occlusion) (red ray => occlusion)

Force Occlusion Occlusion is always processed.

21

4.1.5 Obstruction

Acoustic obstruction describes the alteration within a sound field if the direct sonic wave of a

sound source is blocked by another object. Unlike occlusion, the obstructed sound source is

in the same room with the listener.

Obstruction mainly influences the direct signal of an audio source. The reverberation signal

gets less influenced if an object is obstructed. Obstruction is always measured between the

audio listener and an audio source.

Illustration 4.6 - Obstruction

Obstruction Objects Select the layer of objects that lead to obstruction.

Obstruction

It sets the level of obstruction if another object obstructs the

sound source (0.0 ⇔ 1.0).

Default: 0.6

Obstruction Update

Time

Set the time (sec.) between updating obstruction detection

(0.1 s ⇔ 5.0 s).

Default: 0.2 s

Note: Smaller values lead to increased performance load!

Debug Obstruction

(Gizmos)

Visualizes ray casting between listener and sound source in the

scene window.

(green ray => no obstruction) (red ray => obstruction)

Force Obstruction Obstruction is always processed.

22

4.1.6 Performance Mode

The Performance Mode bypasses the processing of spatialized audio sources if they are in

an idle state. Usually, all audio sources with the Spatialize checkbox enabled are processed

by Unity, no matter if they are playing or not. The Performance Mode is an important feature

to avoid unnecessary processing load.

Important: In Performance Mode play audio sources only with DearVRPlay() or

DearVRPlayOneShot (AudioClip) or DearVRPlayOnAwake flag.

WARNING: Do not use Play() or PlayOnAwake() flag in Performance Mode!

Illustration 4.7 - Performance mode

dearVR Play

Performance Mode

Activates Performance Mode.

Spatial audio sources are NOT processed during the idle state.

Note: Unity usually processes all audio sources with
spatialization on – even if they aren’t playing.

DearVRPlayOnAwake

PlayOnAwake flag for the Performance Mode.

Note: Never activate the audio sources PlayOnAwake in
Performance Mode.

Reverb Tail After Stop

Set length (sec.) of processed Reverb Tail after audio source

stop.

Note: Only important if internal Reverb is active.

Processing Indicator When lit green, the processing is active

23

4.1.7 Audio Source

Some settings of the Audio Source component also affect the dearVR Settings. Not

mentioned settings act as usual in Unity.

For more information about Unity Audio Source settings refer to the Unity manual:

http://docs.unity3d.com/Manual/class-AudioSource.html

Spatialize Automatically set to ON if a dearVR Source component is added.

Bypass Effects /
Listener Effects /
Reverb Zones

These Settings do not have any effect on the dearVR rendering.

Stereo Pan No effect

Spatial Blend Automatically set to 2D if a dearVR Source component is added.

Important: Keep parameter at 2D!

Reverb Zone Mix If Unity Distance Graph in dearVR Source enabled, slider, or graph
control Reverb Level.

Doppler Level No effect

Spread No effect

3D Sound Settings
Graph

The volume graph alters the Direct Level over distance.
Reverb Zone graph alters the Reverb Level over distance.

Note: If the distance is farther than the Max Distance value, the
farthest value is processed. Set Volume and ReverbZone to zero
at Max Distance to mute both for higher distances.

24

Illustration 4.8 - Audio Source Graph

4.2 dearVR Manager

The dearVR Manager component is mandatory in each scene or a global root scene. It

defines global settings for the dearVR Engine.

Note: For details on how to use a global scene, please refer to the unity manual.

http://docs.unity3d.com/Manual/MultiSceneEditing.html

Within the dearVR Manager, you can set the main parameters for auralization and the room

analyzer.

25

Illustration 4.9 - DearVR Manager

The dearVR Manager’s settings are globally stored in an asset file under

Assets/dearVR/Ressources/DearVRManagerState.asset, but you can also put it

somewhere else as long as it is inside the Assets-folder in a folder called Resources. This

also means that every dearVR Manager in every scene has the same state. When you

change the settings in one scene, it is automatically transferred to all of them.

WARNING: Legacy issue

When you update a scene with a dearVR manager from a previous version to v1.5 /

v1.5.1, it causes a loss of the dearVR manger’s settings.

When updating a project, the dearVR manager needs to initialize a new

DearVRManagerState.asset file. You can do this by changing a value in a dearVR manager

instance, pushing the play button, or by creating one via the Assets menu.

26

Loudspeaker Mode Bypass the binaural rendering for all sources. Reflections and
Reverb processing are still active.

Note: Loudspeaker Mode enables you to switch from 3D Audio for
headphones to a loudspeaker compatible mix.
Distance attenuation, Reflection, and Reverb levels are still
maintained.

Automatic Room
Analyzer

Enable the real-time room analyzer to get scene geometry for
auralization. Detected values are shown in Manual Room
Geometry input boxes.

Note: Without room analyzer or Manual Room Geometry active,
reflections are generated based on fixed values fitting the room
preset.

Room Boundaries Select which objects are analyzed as room boundaries.

Analyzer Update
Time

Set the Update-time (in seconds) between two ray casts.
(0.1 s ⇔ 10.0 s)

Note: Faster Update-time leads to more performance load.

Debug Room
Analyser (Gizmos)

Visualize ray casting for room analyzer. Visible in Scene Window.

Note: Use to control the objects detected as room boundaries.

Manual Room
Geometry

Enable to set Room Geometry manually.

UP / DOWN Listener’s distance to the ceiling / ground in meter.

FRONT / BACK Listener’s distance to the front / rear wall measured in meter.
Value modifies delay and level of reflection from front / rear
direction.

LEFT / RIGHT Listener’s distance to the left or right wall measured in meter.
Value modifies delay and level of reflection from the left / right
direction.

27

4.3 dearVR Reverb (Unity Audio Mixer Plugin)

Reverb sends allow various audio sources with different positions and reflections to share

the same reverb. The signal of an audio source is sent to dearVR Reverb plugin instances

within the Unity Audio Mixer. This way, the processing load is reduced by a multiple.

- Create an Audio Mixer and add a new group (e.g., name it Reverb Bus 1).

- Right-click on that group, add effect at the top and select dearVR Reverb.

- Select the dearVR Reverb Plugin and set the Reverb ID between 1 and 100.

IMPORTANT: Each dearVR Reverb Plugin needs a unique Reverb ID!

- Choose the room preset and adjust the reverb parameter.

Illustration 4.10 - dearVR Reverb Audio Mixer Plugin

28

Room Preset Menu to select a Reverb Room preset. (Refer to chapter 5 for
Preset List)

Reverb ID Set an ID for the Reverb Group

IMPORTANT:
Each dearVR Reverb Plugin needs a unique Reverb ID!

Gain Sets the output gain of the Reverb Plugin.

Note: Slider is Pre-Fader Reverb Group in Audio Mixer.

Reverb Sets the overall gain of the reverb signal. (-96dB ⇔ +24dB)

Reverb LP A low-pass filter applied to the reverb signal.
It sets frequency values between 500 Hz to 20000 Hz.

Note: Default values are set within each room preset.

Room Size Factor to decrease the Room Size.
Values (50% ⇔ 100%)

Reverb Bass Boost Enable bass enhancement for a reverb (On / Off)

Default: OFF

Bypass Bypass the processing to control reverb bus input.

Mute Stop the processing to safe performance.

29

5 Preset List
Note: The more extensive a room, the longer the reverb – and the more performance is

needed!

The Performance Level (1-10) illustrates the performance load. Level 10 needs the most

performance.

A. Rooms & Halls Performance
Level

1. Concert Hall 1 5

2. Concert Hall 2 5

3. Recording Hall Large 7

4. Recording Hall Small 4

5. Kings Hall 5

6. Cathedral 10

7. Church 5

8. Chapel 8

9. Room Large 5

10. Room Medium 4

11. Room Small 3

30

B. Postproduction Performance
Level

11. Office 1 2

12. Office 2 2

13. Studio Small 2

14. Conference Hall Small 3

15. Cellar 4

16. Empty Room 3

17. Living Room Small 2

18. Staircase 4

19 Corridor 5

20. Bathroom 3

21. Restroom 4

22. Car 1 1

23. Car 2 1

24. Booth 2

25. Cinema 2

26. Warehouse 10

27. Outdoor Street 5

28. Outdoor Alley 5

31

C. Music production Performance
Level

29. Live Studio Room 5

30. Live Stage 7

31. Live Arena 7

32. Ambience Heavy 4

33. Ambience Plate 3

34. Ambience Medium 3

35. Ambience Small 2

36. Vocal Hall 1 7

37. Vocal Hall 2 7

38. Vocal Plate 8

39. Drum Room 1 6

40. Drum Room 2 6

41. Percussion Plate 5

42. Percussion Ambience 2

43. Acoustic Room 6

44. String Hall 8

45. String Plate 8

32

6 Building with dearVR Unity
Windows:

Windows builds require a Visual Studio 2015 runtime (or later) on the machine which runs

the application.

iOS & Android:

1. The default sample rate on mobile is 24000 Hz.

You may change the sample rate to 44100 Hz or 48000 Hz for higher quality in the trade of

performance.

To change the sample rate, go to menu bar Edit -> Project Setting -> Audio

2. The best practice is to use Reverb Sends and set DSP Buffer Size in the Audio Manager

to Best Performance.

iOS:

In your XCode-Project open /Classes/UnityAppController.mm.

1. Add the line:

#include "../Libraries/Plugins/iOS/AudioPluginInterface.h"

2. In the same file replace line:

- (void)preStartUnity {}

with

- (void)preStartUnity {
UnityRegisterAudioPlugin(&UnityGetAudioEffectDefinitions) ; }

33

7 Upgrading from earlier versions to v1.5.1
We replaced our closed managed plugin DLLs with the open C#-Source files in our plugin.

Due to this change, upgrading a project from earlier versions than v.1.5.0 to v1.5.1 needs

some more adjustments than just importing the new unity package.

7.1 Upgrading on macOS

- Delete the following files from your Unity project:

• /Assets/dearVR/Components/dearVR_Components.dll

• /Assets/dearVR/Components/dearVR_Components.xml

• /Assets/dearVR/Components/Editor/dearVR_Editor.dll

- Open your Unity project

- Import the new dearVR UNITY asset into your project.

- Close Unity.

When upgrading from earlier versions than v.1.5.0, the old managed plugin components

have to be replaced with the new C# source components. The dearVR manager

components will loose their values and are not legacy compatible. To keep the values you

used in your dearVR sources, you can update the fileID and GUID to replace the

components without loosing any information. You might want to create a backup of your

scenes, as the instructions are performed on the Unity scene files.

- Create backups of your Unity scenes

- Open your Unity scenes in a text editor.

- Find all

fileID: -1933281608, guid: 6fc5cdeb2b2664cd69b743656e623709

and replace them with

fileID: 11500000, guid: 497c625f05c190b478129f9cecc739f0

34

- Find all

fileID: -1461815862, guid: 6fc5cdeb2b2664cd69b743656e623709

and replace them with

fileID: 11500000, guid: b51e54047889f1c4dac64a27f85a09c2

To make this part of the process easier for you, you can also run a terminal command. You

can find the commands in the quickstart guide in the dearVR UNITY asset.

- Open terminal

- Move to the folder, where your Unity scenes are

- For each scene, execute the commands stated in the quickstart guide inside the

asset, where you replace scene_to_migrate with the name of your scene:

Afterwards your project is migrated to work with dearVR UNITY v1.5.1!

7.2 Upgrading on Windows

- Delete the following files from your Unity project:

• /Assets/dearVR/Components/dearVR_Components.dll

• /Assets/dearVR/Components/dearVR_Components.xml

• /Assets/dearVR/Components/Editor/dearVR_Editor.dll

- Close Unity.

- On a 64bit Windows system delete the file

/Assets/Plugins/x86_64/AudioPluginDearVR.dll

on a 32bit Windows system delete the file

/Assets/Plugins/x86/AudioPluginDearVR.dll.

- Open your Unity project

- Import the new dearVR UNITY asset into your project.

- Close Unity

35

When upgrading from earlier versions than v.1.5.0, the old managed plugin components

have to be replaced with the new C# source components. The dearVR manager

components will loose their values and are not legacy compatible. To keep the values you

used in your dearVR sources, you can update the fileID and GUID to replace the

components without loosing any information. The following instructions are performed on the

unity scene files, so you might want to create a backup of your scenes.

- Open your Unity scenes in a text editor.

- Find all

fileID: -1933281608, guid: 6fc5cdeb2b2664cd69b743656e623709
and replace them with

fileID: 11500000, guid: 497c625f05c190b478129f9cecc739f0

- Find all

fileID: -1461815862, guid: 6fc5cdeb2b2664cd69b743656e623709

and replace them with

fileID: 11500000, guid: b51e54047889f1c4dac64a27f85a09c2

To make this part of the process easier for you, you can also run a terminal command. You

can find the commands in the quickstart guide in the dearVR UNITY asset.

- Open cmd

- Move to the folder, where your Unity scenes are

- For each scene, execute the commands stated in the quickstart guide inside the

asset, where you replace scene_to_migrate with the name of your scene:

Afterwards your project is migrated to work with dearVR UNITY v1.5.1!

36

8 Importing automations from dearVR SPATIAL
CONNECT

Premixing a sound design in a DAW can be very essential for game development. But

creating the same automations in Unity per hand again should not be necessary. Therefore,

we created a workflow to export these automations from SPATIAL CONNECT to use them

with dearVR UNITY to get the same spatialization.

8.1 Export object automations using SPATIAL CONNECT

To export automations from SPATIAL CONNECT we added a record button to the GUI.

Pressing the recording button starts the playback in the DAW and records the positions of all

3D audio sources over time. The object automations are stored in the same folder where the

configuration is stored and have “.dear” as a suffix. Make sure, that you save your

configuration in a place where you can find the object automations easily after recording and

that you start the recording at the beginning of your audio regions to have them

synchronized when importing to dearVR UNITY. The object automations naming is handled

like this: spatialconnect-project-name_channel-number_channel-name.dear, where

spatialconnect-project-name is the name of your spatial connect project, channel number is

a counter for all channels (starting with 0) and channel-name is the name of the channel in

your DAW.

37

SPATIAL CONNECT will record all object automations you did with dearVR PRO, also the

ones that don’t have any explicit automation curves. Then only the position will be saved in

the automation. To get the automation curve aligned with your audio, all tracks need to start

at the same time and your cursor needs to be at the beginning of all audio when starting the

recording of the object automations.

Example 1: Be careful!

Example 2: Be careful!

38

Example 3: This works correctly

If your audio does not start all at the same time you can export the automations from a fixed

point (e.g. 00:00:00:00) and then do a multichannel bounce also beginning at the same time.

Many DAWs offer an option for multichannel export. Name the exported files like the created

.dear files, which is “SPATIALCONNECT project name”_”channel number”_”channel name”.

This helps the automations to link automatically to the audio during import.

With dearVR UNITY we deliver also an importer for the object automation files. When pulling

.dear-files into the UNITY assets folder the importer automatically recognizes them as object

automations and will create an automation clip and a prefab with a placeholder model for

you to use in your scene. The importer also links a soundfile to the Unity audio source

component if there is a clip present in the folder where you imported the object automation

which has the same name as the object automation! So if you have a object automation with

the name project_0_bass-drum.dear your sound file needs to have the name

project_0_bass-drum.wav (or .mp3, .aac, etc.).

39

8.2 Importing object automations in Unity

The files created by the importer are in the following folders:

• Animation clips: dearVR/dearVR_Animations

• Prefabs: dearVR/dearVR_prefabs

The animation clips can be pulled onto game objects to link the object automation to the

object. An automator component will be created automatically.

The prefabs are game objects that are already fully functional as spatialization objects. They

consist of a game object that already has an animation component, a dearVR source

component and an audio source component. If there was a sound file with the same name

as the object automation in the folder during import the sound file is already assigned to the

audio source.

All in all, the fastest way to set up your Spatial Connect project inside Unity you need to

follow these steps:

• Export the object automations using Spatial Connect.

• Import the sound files you used in your project into Unity (make sure they

have the same name as the object automations

• Import your object automations into Unity

• Create a new scene (or open an existing one)

• Import the prefabs into your scene

• Press play!

40

9 dearVR API
A complete API is available at the end of this document. To control the dearVR properties

via a script, see the following DearVRScriptLoad.cs example:

using UnityEngine;
using System.Collections;
using UnityEngine.Audio;
using DearVR;

public class DearVRScriptLoad : MonoBehaviour {

 [SerializeField] bool internalReverb = false;

 AudioSource myAudioSource;

 DearVRSource myDearVRSource;

 // Assign in Inspector or in script
 [SerializeField] AudioClip myAudioClip;

 [SerializeField] DearVRSource.RoomList roomSelection;

 [SerializeField] DearVRSerializedReverb[] reverbSendList;

 [SerializeField] AudioMixerGroup audioMixer;

 [SerializeField] bool performanceMode = false;

 [SerializeField] bool loop = false;

 [SerializeField] AudioClip clipForOneShot;

 void Awake () {

 // Create dearVR-Instance
 myDearVRSource = gameObject.AddComponent<DearVRSource>();

 myDearVRSource.PerformanceMode = performanceMode;

 // Assign and set AudioSource
 myAudioSource = myDearVRSource.currentAudioSource;

 myAudioSource.loop = loop;

 if (performanceMode) {
 myAudioSource.playOnAwake = false;
 }
 // Select Room Preset
 myDearVRSource.RoomPreset = roomSelection;

41

 // set audiomixer
 myAudioSource.outputAudioMixerGroup = audioMixer;

 myDearVRSource.InternalReverb = internalReverb;

 if (!internalReverb) {
 if (reverbSendList != null && reverbSendList.GetLength(0) > 0) {

 myDearVRSource.SetReverbSends(reverbSendList);

 }
 }

 // Set dearVR-Settings
 myDearVRSource.BassBoost = false;

 // Assign AudioClip

 if (myAudioClip) {

 myAudioSource.clip = myAudioClip;

 } else {

 Debug.LogWarning("DEARVR: AudioClip not assigned!");

 }

 }

 public void PlayStop(bool shouldPlay) {

 if (gameObject.activeSelf) {

 if (shouldPlay) {

 DearVRPlay ();

 } else {

 DearVRStop ();

 }

 }

 }

 void DearVRPlay() {

 if (performanceMode) {

 myDearVRSource.DearVRPlay();

 } else {

42

 myAudioSource.Play ();

 }

 }

 public void DearVRPlayOneShot() {

 if (performanceMode) {

 myDearVRSource.currentAudioSource.loop = false;

 myDearVRSource.DearVRPlayOneShot(clipForOneShot);

 }

 }

 void DearVRStop() {

 if (performanceMode) {

 myDearVRSource.DearVRStop();

 } else {

 myAudioSource.Stop ();

 }

 }

 public void Deactivate()

 {

 gameObject.SetActive(false);

 }

 public void Activate()

 {

 gameObject.SetActive(true);

 }

 public void PlayScript()

 {

 if (myAudioSource)

 {

 myAudioSource.Play();

 }

 }

43

 void Update() {

 if (myDearVRSource.RoomPreset != roomSelection) {

 myDearVRSource.RoomPreset = roomSelection;

 }

 if (myDearVRSource.InternalReverb && !internalReverb) {

 myDearVRSource.InternalReverb = false;

 if (reverbSendList != null && reverbSendList.GetLength(0) > 0) {

 myDearVRSource.SetReverbSends(reverbSendList);

 }

 }

 if (!myDearVRSource.InternalReverb && internalReverb) {

 myDearVRSource.InternalReverb = true;

 }

 }

}

44

10 Troubleshooting
1. Audible dropouts in consequence of performance issues.
Please check the DSP load in Stats Window. Reduce the performance load by using Reverb
Sends.

2. Heavy DSP-Processing load while only playing a few spatial audio sources.

Check if you have further (not playing) audio sources in the scene. Activate the Performance

Mode for each.

2. Performance Issues on Android Devices.

For android devices, always set DSP Buffer Size in the Audio Manager to Best Performance.

3. Problems with playback speed or audio stuttering on mobile devices.

Audio stuttering or slow playback speed might occur as a result of performance issues.

Please be sure to follow the advice given to performance issues.

4. Function AudioMixerSnapshot.TransitionTo

Transitions between snapshots are a great feature within Unity. However, it is not possible to

change the parameter for Room Presets and Reverb IDs when using the function

TransitionTo.

5. Distant sound source are still audible in reverb

Check Settings for Distance Attenuation. Using the unity distance attenuation (see 0 –

Settings), the Reverb Zone graph is responsible for the Reverb Level over distance (see

Illustration 4.8 - Audio Source Graph).

6. XCode Bitcode

XCode Bitcode option is not supported yet. Disable Bitcode in Build Settings / Build

Options.

7. External Distance Attenuation

The External Distance Attenuation is not available in Unity 5.6 and 2017.1.

45

8. Legacy issues

Updating from version 1.2.1 or earlier to v1.5.1 causes the loss of the dearVR Manager’s

settings.

Contact us to report bugs, errors or suggest features via support@dear-reality.com

Please include the following information:

- Plugin version

- Operating system

- Logfile / Console output

- Host software

46

11 Changelog
dearVR UNITY v1.6

- Add object automation workflow

- Fixed minor bugs

dearVR UNITY v1.5.1

- Add support for Android ARM64

- Fixed minor bugs

dearVR UNITY v1.5.0

- Add support for IL2CPP

- Up to 60% performance boost on binaural output

- Access to C# editor scripts

- Optimized dearVR API documentation

- Various bug fixes

dearVR UNITY v1.2.1

- add API documentation

- update dearVR demo scene

- update DearVRScriptLoad.cs example

- disabled Bitcode for iOS

- Fixed minor bugs

dearVR UNITY v1.2.0

- Added Obstruction feature

- Optimized Performance for Internal Reverb

- Optimized Auralization

- Fixed minor bugs

dearVR UNITY v1.1.1
- Fixed input channel parameter to 0.0

- Fixed not playing sources after deactivation and reactivation

47

- Enabled mono audio clips for spatialization

- Enabled ENABLE_BITCODE for iOS

- Enabled DearVRPlayOnAwake on OnEnable

- Auto detecting Android architecture as ARMv7 now

dearVR UNITY v1.1
- Changed Distance Correction range to [0.01 m - 10 m]

- Changed Occlusion default to 0.6

- Changed Occlusion Update Interval default to 0.2

- Changed Occlusion ray cast start to Audio Listener (was Camera before)

- Added Force Occlusion flag

- Added Mute (no processing) flag to Reverb Bus

- Added Performance-Mode: not processing spatial audio sources, that aren't playing.

- Added Reverb Tail after stop in Performance-Mode (only useful for Internal Reverb)

- Solved bug in Windows on performance overload

48

12 Contact
Support

Please let us know if there are any questions concerning the dearVR Plugin.

If you need further assistance, please send an email to:

support@dear-reality.com

For the latest news concerning dearVR, please visit our website at:

www.dearVR.com

Dear Reality GmbH

 Binterimstraße 8

 40223 Düsseldorf

Caution

Using headphones requires responsible listening. Damage to hearing occurs when listening

to loud sounds with headphones over time.

- Set the volume control of your computer to a minimum when connecting your

headphones.

- Set the volume in a quiet environment and select the lowest volume at which you can

hear adequately.

- Do not turn the volume control too high, as this can cause permanent hearing

damage.

- Be aware that you can adapt to higher volume settings over time, not realizing that

the higher volume may be�harmful to your hearing.�

Dear Reality GmbH will, in any event, not be liable for any damage to hearing caused by

loud sounds.

dearVR Copyright © by Dear Reality GmbH. All rights reserved.

All trademarks or registered trademarks are the property of their respective owners.

No part of this documentation may be reproduced or transmitted in any form by any means,

electronic or mechanical, without permission in writing from Dear Reality GmbH.

Class DearVRSource
Dear VR source, equivalent to Unity's AudioSource, is responsible for object based binaural sounds This is
the class you would need to put on your objects, almost all aspects of sound can be adjusted from this class.

Inheritance

System.Object
DearVRSource

Namespace: DearVR (DearVR.html)

Assembly: cs.temp.dll.dll

Syntax

Fields

clipIsPlaying
The clip on the source is currenlty playing.

Declaration

Field Value

Type Description

System.Boolean

obstructionRayUpdateTime
how often should ray casting be performed for obstruction.

Declaration

Field Value

Type Description

System.Single

obstructionWallMask
The obstruction mask. Used for ray tracing obstructing objects. all objects having this layer, will be
considered for obstruction

Declaration

Field Value

public class DearVRSource : MonoBehaviour

public bool clipIsPlaying

public float obstructionRayUpdateTime

public LayerMask obstructionWallMask

file:///Volumes/Share/_unity_doc/api/DearVR.html

Type DescriptionType Description

LayerMask

occlusionRayUpdateTime
how often should ray casting be performed for occlusion.

Declaration

Field Value

Type Description

System.Single

occlusionWallMask
The occlusion mask. Used for ray tracing occluding objects. all objects having this layer, will be considered
for occlussion

Declaration

Field Value

Type Description

LayerMask

Properties

Auralization
turns realtime auralization. This uses realtime room geometries to calculate realtime reflections. NOTE: only
works if either RoomAnalyzer (DearVR.DearVRManager.html#DearVR_DearVRManager_RoomAnalyzer) or
SetRoomGeo (DearVR.DearVRManager.html#DearVR_DearVRManager_SetRoomGeo) are set to true.

Declaration

Property Value

Type Description

System.Boolean true if auralization; otherwise, false .

AzimuthCorrection
Gets or sets the azimuth correction. Can be used to scale the positioning of sounds

Declaration

public float occlusionRayUpdateTime

public LayerMask occlusionWallMask

public bool Auralization { get; set; }

file:///Volumes/Share/_unity_doc/api/DearVR.DearVRManager.html#DearVR_DearVRManager_RoomAnalyzer
file:///Volumes/Share/_unity_doc/api/DearVR.DearVRManager.html#DearVR_DearVRManager_SetRoomGeo

Property Value

Type Description

System.Single The azimuth correction.

BassBoost
filter, used to boost up the low end. Sometimes this is necessary to build up more low end, when
binauralising sounds.

Declaration

Property Value

Type Description

System.Boolean true if bass boost; otherwise, false .

Bypass
if set to true bypasses the dearVR engine.

Declaration

Property Value

Type Description

System.Boolean true if bypass; otherwise, false .

currentAudioSource
Gets the current audio source, being processed by dearVR

Declaration

Property Value

Type Description

AudioSource The current audio source.

DearVRPlayOnAwake
should the audio play on awake

Declaration

public float AzimuthCorrection { get; set; }

public bool BassBoost { get; set; }

public bool Bypass { get; set; }

public AudioSource currentAudioSource { get; }

public bool DearVRPlayOnAwake { get; set; }

Property Value

Type Description

System.Boolean true if dear VR play on awake; otherwise, false .

DirectLevel
Direct gain of the source, before reverb and reflection.

Declaration

Property Value

Type Description

System.Single The direct level.

DistanceCorrection
Gets or sets the distance correction. Can be used to scale the positioning of sounds

Declaration

Property Value

Type Description

System.Single The distance correction.

ForceObstruction
obstruction should be active for this source, irrespective of ray casting.

Declaration

Property Value

Type Description

System.Boolean true if force obstruction; otherwise, false .

ForceOcclusion
occlusion should be active irrespective of ray casting.

Declaration

Property Value

Type Description

public float DirectLevel { get; set; }

public float DistanceCorrection { get; set; }

public bool ForceObstruction { get; set; }

public bool ForceOcclusion { get; set; }

Type Description

System.Boolean true if force occlusion; otherwise, false .

GainLevel
master gain of audio.

Declaration

Property Value

Type Description

System.Single The gain level.

InputChannel
which side of stereo channel to use for binaural processing. NOTE: Due to an update in Unity's Spatial
framework, changing this would not have any effect. Even with stereo files, only the left channel is used as
input

Declaration

Property Value

Type Description

System.Single The input channel.

InternalReverb
if set to true, this instance uses its own reverb engine, independent of the reverb send plugin

Declaration

Property Value

Type Description

System.Boolean true if internal reverb; otherwise, false .

IsProcessing
Gets a value indicating whether the engine is actually processing audio.

Declaration

Property Value

Type Description

public float GainLevel { get; set; }

public float InputChannel { get; set; }

public bool InternalReverb { get; set; }

public bool IsProcessing { get; }

Type Description

System.Boolean true if this instance is processing; otherwise, false .

ObstructionActive
activates obstruction for this source

Declaration

Property Value

Type Description

System.Boolean true if obstruction activ; otherwise, false .

ObstructionDebugRayCast
Show debug ray casts used for obstruction

Declaration

Property Value

Type Description

System.Boolean true if occlusion debug ray cast; otherwise, false .

ObstructionLevel
how much obstruction should have an effect on the sound

Declaration

Property Value

Type Description

System.Single The obstruction level.

ObstructionRayUpdateFreq
ray casting frequency used for obstruction detection

Declaration

Property Value

Type Description

System.Single The obstruction ray update freq.

public bool ObstructionActive { get; set; }

public bool ObstructionDebugRayCast { get; set; }

public float ObstructionLevel { get; set; }

public float ObstructionRayUpdateFreq { get; set; }

OcclusionActive
activates occlusion for this source

Declaration

Property Value

Type Description

System.Boolean true if occlusion activ; otherwise, false .

OcclusionDebugRayCast
Show debug ray casts used for occlusion

Declaration

Property Value

Type Description

System.Boolean true if occlusion debug ray cast; otherwise, false .

OcclusionLevel
How much occlusion should have and effect on the sound

Declaration

Property Value

Type Description

System.Single The occlusion level.

OcclusionRayUpdateFreq
ray casting frequency used for occlusion detection

Declaration

Property Value

Type Description

System.Single The occlusion ray update freq.

PerformanceMode

public bool OcclusionActive { get; set; }

public bool OcclusionDebugRayCast { get; set; }

public float OcclusionLevel { get; set; }

public float OcclusionRayUpdateFreq { get; set; }

activating this bypasses processing during idle state. Play Audio Sources only with DearVRPlay()
(DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRPlay) , DearVRPlayOneShot(AudioClip)
(DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRPlayOneShot_AudioClip_) or DearVRPlayOn
Awake (DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRPlayOnAwake) flag. WARNING: Do not
use the Play() or PlayOnAwake flag in Performace Mode!"

Declaration

Property Value

Type Description

System.Boolean true if performance mode; otherwise, false .

ReflectionLevel
Gets or sets the reflection level.

Declaration

Property Value

Type Description

System.Single The reflection level.

ReflectionLP
lowpass filter frequency on reflections

Declaration

Property Value

Type Description

System.Single The reflection L.

ReverbLevel
Gets or sets the reverb level.

Declaration

Property Value

Type Description

System.Single The reverb level.

ReverbLP

public bool PerformanceMode { get; set; }

public float ReflectionLevel { get; set; }

public float ReflectionLP { get; set; }

public float ReverbLevel { get; set; }

lowpass filter frequency on reverb

Declaration

Property Value

Type Description

System.Single The reverb L.

ReverbStopOverlap
Gets or sets the reverb tail in seconds, if using DearVRPlay()
(DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRPlay) or DearVRPlayOneShot(AudioClip)
(DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRPlayOneShot_AudioClip_), this variable is used
to deactivate processing in engine

Declaration

Property Value

Type Description

System.Single The reverb stop overlap.

RoomPreset
Gets or sets the room preset.(aka virtual acoustic preset)

Declaration

Property Value

Type Description

DearVRSource.RoomList (DearVR.DearVRSource.RoomList.html) The room preset.

RoomSize
Sets the roomsize, that can be used to adjust the reverb tail. If Auralization
(DearVR.DearVRSource.html#DearVR_DearVRSource_Auralization) is on, then this also has an effect on
reflections

Declaration

Property Value

Type Description

System.Single The size of the room.

public float ReverbLP { get; set; }

public float ReverbStopOverlap { get; set; }

public DearVRSource.RoomList RoomPreset { get; set; }

public float RoomSize { get; set; }

file:///Volumes/Share/_unity_doc/api/DearVR.DearVRSource.RoomList.html

UseUnityDistance
should the engnine use unity distancec attenaution?.

Declaration

Property Value

Type Description

System.Boolean true if use unity distance; otherwise, false .

Methods

DearVRPlay()
plays the source in performance mode, Unity processes all audio sources irrespective of them playing or not,
this method circumvents that problem, by deactivating the processing in dearVR if you use this method you
have to use DearVRStop() (DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRStop) since this
accounts for the reverb tail before stopping dearVR processing, Also you can change ReverbStopOverlap
(DearVR.DearVRSource.html#DearVR_DearVRSource_ReverbStopOverlap) to account for different reverb
tails after which the actual stop takes place.

Declaration

DearVRPlayOneShot(AudioClip)
plays the source in performance mode and with oneshot, essentially calling unity's PlayOneShot
UnityEngine.AudioSource.PlayOneShot DearVRPlay()
(DearVR.DearVRSource.html#DearVR_DearVRSource_DearVRPlay)

Declaration

Parameters

Type Name Description

AudioClip clip Clip.

DearVRStop()
Stops the audio and then processing after ReverbStopOverlap
(DearVR.DearVRSource.html#DearVR_DearVRSource_ReverbStopOverlap) (in seconds) is over

Declaration

GetReverbSendList()

public bool UseUnityDistance { get; set; }

public void DearVRPlay()

public void DearVRPlayOneShot(AudioClip clip)

public void DearVRStop()

returns an instance of current reverb send structure, can be used to edit the reverb structure with a
subsequent call to SetReverbSends(DearVRSerializedReverb[])
(DearVR.DearVRSource.html#DearVR_DearVRSource_SetReverbSends_DearVR_DearVRSerializedReverb___)

Declaration

Returns

Type Description

DearVRSerializedReverb (DearVR.DearVRSerializedReverb.html)[] The reverb send list.

ReverbSendsChanged()
used internaly by dearVR, calling this function would not have any effect from client side

Declaration

Returns

Type Description

System.Boolean true , if sends changed was reverbed, false otherwise.

SetReverbSends()
used internaly by dearVR, do not use this function to set reverb sends instead use GetReverbSendList()
(DearVR.DearVRSource.html#DearVR_DearVRSource_GetReverbSendList) and SetReverbSends(Dear
VRSerializedReverb[])
(DearVR.DearVRSource.html#DearVR_DearVRSource_SetReverbSends_DearVR_DearVRSerializedReverb___)

Declaration

SetReverbSends(DearVRSerializedReverb[])
use this fuction to set the the reverb sends, these will be used to send the binauralised sound to the reverb
bus only used if internal reverb is inactive

Declaration

Parameters

Type Name Description

DearVRSerializedReverb (DearVR.DearVRSerializedReverb.html)[] rl Rl.

public DearVRSerializedReverb[] GetReverbSendList()

public bool ReverbSendsChanged()

public void SetReverbSends()

public void SetReverbSends(DearVRSerializedReverb[] rl)

file:///Volumes/Share/_unity_doc/api/DearVR.DearVRSerializedReverb.html
file:///Volumes/Share/_unity_doc/api/DearVR.DearVRSerializedReverb.html

Class DearVRManager
Dear VR manager. A singleton manager class for dearVR global settings

Inheritance

System.Object
DearVRManager

Namespace: DearVR (DearVR.html)

Assembly: cs.temp.dll.dll

Syntax

Properties

Bypass3DAudio
DearVRManager (DearVR.DearVRManager.html) Bypass the bniaural rendering for all sources, reflections and
reverb processing are still active. effectively enabling speaker mode. Note: Loudspeaker Mode enables you to
switch from 3D Audio for headphones to a loudspeaker compatible mix. Distance attenuation, Reflection, and
Reverb levels are still maintained.

Declaration

Property Value

Type Description

System.Boolean true if bypass3 D audio; otherwise, false .

DearListener
Gets or sets the listener used by dearVR.

Declaration

Property Value

Type Description

AudioListener The dear listener.

DebugRoomAnalyzer
turns room analyzer debuging rays off/on

Declaration

Property Value

public class DearVRManager : MonoBehaviour

public static bool Bypass3DAudio { get; set; }

public static AudioListener DearListener { get; set; }

public static bool DebugRoomAnalyzer { get; set; }

file:///Volumes/Share/_unity_doc/api/DearVR.html
file:///Volumes/Share/_unity_doc/api/DearVR.DearVRManager.html

Type Description

System.Boolean

FrontBackGeo
Gets or sets the front side and back side of room geometry.

Declaration

Property Value

Type Description

Vector2 The front back geo.

Instance
Use this to access the singleton instance of DearVRManager

Declaration

Property Value

Type Description

DearVRManager (DearVR.DearVRManager.html) The instance.

LeftRightGeo
Gets or sets the left side and the right side of room geometry.

Declaration

Property Value

Type Description

Vector2 The left right geo.

RoomAnalyzer
if set to true, room geometry is calculated by ray tracing and sent to the engine and used for reflections
turning this on would turn SetRoomGeo
(DearVR.DearVRManager.html#DearVR_DearVRManager_SetRoomGeo) off

Declaration

Property Value

Type Description

public static Vector2 FrontBackGeo { get; set; }

public static DearVRManager Instance { get; }

public static Vector2 LeftRightGeo { get; set; }

public static bool RoomAnalyzer { get; set; }

file:///Volumes/Share/_unity_doc/api/DearVR.DearVRManager.html

Type Description

System.Boolean true if set room geo; otherwise, false .

RoomMask
layers used for the raytracing of room geoemtries.

Declaration

Property Value

Type Description

LayerMask The room mask.

RoomUpdateFreq
how often room geometries are updated with ray tracing

Declaration

Property Value

Type Description

System.Single

SetRoomGeo
if set to true, room geometry is sent to the engine and used for reflections, turning this on will turn off Room
Analyzer (DearVR.DearVRManager.html#DearVR_DearVRManager_RoomAnalyzer)

Declaration

Property Value

Type Description

System.Boolean true if set room geo; otherwise, false .

UpDownGeo
Gets or sets up side and down side of room geometry.

Declaration

Property Value

Type Description

public static LayerMask RoomMask { get; set; }

public static float RoomUpdateFreq { get; set; }

public static bool SetRoomGeo { get; set; }

public static Vector2 UpDownGeo { get; set; }

Type Description

Vector2 Up down geo.

