

Comparison data of 6 kinds of core shell C18 columns

Column name

- 1. Company P C18, 2.6 μm: Kinetex C18
- 2. Company T C18, 2.6 μ m: Accucore C18
- 3. Company W C18, 2.7 μ m: Cortecs C18
- 4. Company A C18, 2.7 μm: PoroShell C18 EC
- 5. Company S C18, 2.7 µm: Ascentis Express C18
- 6. SunShell C18, 2.6 μ m

Comparison of standard samples

Comparison of pyridine

Column:

Company P C18, 2.6 μ m 150 x 4.6 mm Company T C18, 2.6 μ m 150 x 4.6 mm Company W C18, 2.7 μ m 150 x 4.6 mm Company A C18, 2.7 μ m 150 x 4.6 mm Company S C18, 2.7 μ m 150 x 4.6 mm SunShell C18, 2.6 μ m 150 x 4.6 mm Mobile phase: CH₃OH/H₂O=30/70 Flow rate: 1.0 mL/min Temperature: 40 °C Detection: UV@250nm Sample: 1 = Uracil 2 = Pyridine 3 = Phenol

Comparison of oxine, metal chelating compound

Comparison of formic acid

Column:

Company P C18, 2.6 μ m 150 x 4.6 mm Company T C18, 2.6 μ m 150 x 4.6 mm Company W C18, 2.7 μ m 150 x 4.6 mm Company A C18, 2.7 μ m 150 x 4.6 mm Company S C18, 2.7 μ m 150 x 4.6 mm SunShell C18, 2.6 μ m 150 x 4.6 mm Mobile phase: CH₃CN/0.1% H₃PO₄=2/98 Flow rate: 1.0 mL/min Temperature: 40 °C Detection: UV@210nm Sample: 1 = Formic acid 2 = Acetic acid 3 = Propionic Acid

Summary of standard samples

	Pressure ^a	Retention ^b	Plate ^c	Pyridine	Oxine	Formic acid	Point
SunShell C18	◯21.8	10.4	©31,900	\bigcirc	\bigcirc	\bigcirc	14
Ascentis Express C18	○22.2	9.7	©31,800	\bigtriangleup	\bigtriangleup	×	7
PoroShell C18 EC	×30.6	9.0	◎30,002	\bigcirc	\bigtriangleup	\bigcirc	10
Cortecs C18	©18.5	7.7	×23,300	×	\bigcirc	\bigtriangleup	6
Accucore C18	○22.7	7.4	©31,600	×	×	\bigtriangleup	6
Kinetex C18	△26.1	5.4	◎30,800	×	\bigcirc	\bigcirc	10

- a. Mobile phase; methanol:water=75:25, 40 °C, 1mL/min, 150 x 4.6mm
- b. Retention factor of amylbenzene
- c. Theoretical plate of amylbenzene

 \bigcirc : 3 point, \bigcirc : 2 point, \triangle : 1 point, \times : 0 point

Characteristics

	Carbon loading (%)	Specific surface area ^a (m ² /g)	Pore volume ^a (mL)	Pore diameter ^a (nm)
SunShell C18	7.3 (7) ^b	125 (150) ^b	0.261	8.34 (9) ^b
Ascentis Express C18	8.0	133 (150) ^b	0.278	8.20 (9) ^b
PoroShell C18 EC	8.5 (8) ^b	135 (130) ^b	0.414	12.3 (12) ^b
Accucore C18	8.8 (9) ^b	130 (130) ^b	0.273	8.39 (8) ^b
Cortecs C18	7.3 (6.6) ^b	113	0.264	9.32
Kinetex C18	4.9 (12 effective) ^b	102 (200 effective) ^b	0.237	9.25 (10) ^b

- a. Measured after C18 materials were sintered at 600 degree Celsius for 8 hours. The measured value of each sintered core shell silica is considered to be smaller than that of the original core shell silica.
- b. Value written in each brochure or literature

All data were measured in ChromaNik laboratory.

Particle distribution

*Measured using Beckman Coulter Multisizer 3 after C18 materials were sintered at 600 degree Celsius for 8 hours. The value measure by Coulter Counter method is smaller than the real value because a porous material includes an electrolyte solution and the resistance value decreases.

a. Median particle size

Mobile phase: Acetonitrile/**20mM phosphate buffer pH7.0**=(60:40) Column dimension: 150 x 4.6 mm, Flow rate: 1.0 mL/min, Temp.: 40°C

ChromaNik Technologies Inc.

Loading capacity of amitriptyline I

Mobile phase: Acetonitrile/**20mM phosphate buffer pH7.0**=(60:40) Column dimension: 150 x 4.6 mm, Flow rate: 1.0 mL/min, Temp.: 40°C

Loading capacity of amitriptyline II

Mobile phase: Acetonitrile/**10mM ammonium acetate pH6.8**=(40:60) Column dimension: 150 x 4.6 mm, Flow rate: 1.0 mL/min, Temp.: 40°C

Loading capacity of amitriptyline III

Mobile phase: Acetonitrile/**0.1% formic acid**=(30:70) Column dimension: 150 x 4.6 mm, Flow rate: 1.0 mL/min, Temp.: 40°C

In the case of using acetonitrile /0.1% formic acid as a mobile phase, amitriptyline peak shows more tailing because a loading capacity decreases in an acidic, low-ionic-strength mobile phase.

Stability under acidic pH condition

Durable test condition Column size: 50 x 2.1 mm Mobile phase: CH₃CN/1.0% TFA, pH1=10/90 Flow rate: 0.4 mL/min Temperature: 80 °C

Measurement condition Column size: 50 x 2.1 mm Mobile phase: $CH_3CN/H_2O=60/40$ Flow rate: 0.4 mL/min Temperature: 40 °C Sample: 1 = Uracil 2 = Butylbenzene

Stability under basic pH condition

Durable test condition Column size: 50 x 2.1 mm Mobile phase: CH₃OH/20mM Sodium borate/10mM NaOH=30/21/49 (pH10) Flow rate: 0.4 mL/min Temperature: 50 °C

Measurement condition Column size: $50 \times 2.1 \text{ mm}$ Mobile phase: CH₃OH/H₂O=70/30 Flow rate: 0.4 mL/min Temperature: 40 °C Sample: 1 = Butylbenzene

Summary of Stability

	Acidic condition pH 1	Basic condition pH 10	pH range written in each brochure
SunShell C18	\bigcirc	\bigcirc	1.5 - 10
Ascentis Express C18	\bigcirc	\bigcirc	2 - 9
Cortecs C18	\bigcirc	not tested	2 - 8
PoroShell C18 EC	\bigtriangleup	\bigtriangleup	2 - 9
Accucore C18	\bigtriangleup	\bigtriangleup	1 - 11
Kinetex C18	\bigtriangleup	\bigtriangleup	1.5 - 10

Innovations United 300 East 57th Street Suite 11J New York, NY 10022 Tel: 212-204-0075 Fax: 484-313-6368 Email: info@innovationsunited.com Web: www.innovationsunited.com