Scientific Calculator E-Writer User's Guide • ENGLISH • ## **About this Manual** - The MATH mark indicates an example that uses Math format, while the LINE mark indicates Linear format. For details about input/output formats, see "Specifying the Input/Output Format". - Keycap markings indicate what a key inputs or what function it performs. Example: (1), (2), (+), (-), (4), (40), etc. - Pressing the set or was key followed by a second key performs the alternate function of the second key. The alternate function is indicated by the text printed above the key. The following shows what the different colors of the alternate function key text mean. | If key marking text is this color: | It means this: | |-------------------------------------|---| | Yellow | Press (SHFT) and then the key to access the applicable function. | | White | Press APA and then the key to input the applicable variable, constant, or symbol. | | Blue (or enclosed in Blue brackets) | Enter the CMPLX Mode to access the function. | | Blue (or enclosed in Blue brackets) | Enter the BASE-N Mode to access the function. | The cursor key is marked with four arrows, indicating direction, as shown in the illustration nearby. In this User's Guide, cursor key operation is indicated as ♠, ♠, ♠, and ♠. - The displays and illustrations (such as key markings) shown in this User's Guide and the separate Appendix are for illustrative purposes only, and may differ somewhat from the actual items they represent. - The contents of this manual are subject to change without notice. - In no event shall us. be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of this product and items that come with it. Moreover. Our company shall not be liable for any claim of any kind whatsoever by any other party arising out of the use of this product and the items that come with it. ## Sample Operations Sample operations in this manual are indicated by a 2 icon. Unless specifically stated, all sample operations assume that the calculator is in its initial default setup. Use the procedure under "Initializing the Calculator" to return the calculator to its initial default setup. For information about the MATH, LINE, Deg, and Rad marks that are shown in the sample operations, see "Configuring the Calculator Setup". ## **Initializing the Calculator** Perform the following procedure when you want to initialize the calculator and return the calculation mode and setup to their initial default settings. Note that this operation also clears all data currently in calculator memory. SHIFT 9 (CLR) (3 (All) (Yes) - For information about calculation modes and setup settings, see "Calculation Modes and Calculator Setup". - For information about memory, see "Using Calculator Memory". ## **Safety Precautions** Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference. ## Caution This symbol is used to indicate information that can result in personal injury or material damage if ignored. ## **Battery** - After removing the battery from the calculator, put it in a safe place where it will not get into the hands of small children and accidentally swallowed. - Keep batteries out of the reach of small children. If accidentally swallowed, consult with a physician immediately. - Never charge the battery, try to take the battery apart, or allow the battery to become shorted. Never expose the battery to direct heat or dispose of it by incineration. - Improperly using a battery can cause it to leak and damage nearby items, and can create the risk of fire and personal injury. - Always make sure that the battery's positive ⊕ and negative ⊖ ends are facing correctly when you load it into the calculator. - Use only the type of battery specified for this calculator in this manual. ## **Disposing of the Calculator** Never dispose of the calculator by burning it. Doing so can cause certain components to suddenly burst, creating the risk of fire and personal injury. ## **Handling Precautions** - Be sure to press the ON key before using the calculator for the first time. - Even if the calculator is operating normally, replace the battery at least once every three years. - A dead battery can leak, causing damage to and malfunction of the calculator. Never leave a dead battery in the calculator. - The battery that comes with this unit discharges slightly during shipment and storage. Because of this, it may require replacement sooner than the normal expected battery life. - Low battery power can cause memory contents to become corrupted or lost completely. - Avoid use and storage of the calculator in areas subjected to temperature extremes. Very low temperatures can cause slow display response, total failure of the display, and shortening of battery life. Also avoid leaving the calculator in direct sunlight, near a window, near a heater or anywhere else it might be exposed to very high temperatures. Heat can cause discoloration or deformation of the calculator's case, and damage to internal circuitry. - Avoid use and storage of the calculator in areas subjected to large amounts of humidity and dust. - Never drop the calculator or otherwise subject it to strong impact. - Never twist or bend the calculator. Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending. - . Never try to take the calculator apart. - Never press the keys of the calculator with a ballpoint pen or other pointed object. - Use a soft, dry cloth to clean the exterior of the calculator. If the calculator becomes very dirty, wipe it off with a cloth moistened in a weak solution of water and a mild neutral household detergent. Wring out all excess liquid before wiping the calculator. Never use thinner, benzene or other volatile agents to clean the calculator. Use the side writing pen to write in the writing area, and press the clear button to clear the written content. If the content on the writing board cannot be cleared, please check whether the clear lock key is in the locked side. If yes, please turn it to unlock side. If the content still cannot be cleared after the operation, please replace the battery. Clear Button—Clear the writing content on the tablet screen Lock Switch—Protect the writing content on the tablet from being erased ON Key—Turn on the scientific calculator ## **Specifications** | Product Size: 162*81*17.5mm/6.4*3.2*0.7 Inch | | | |---|--|--| | Writing Board Life: 50000 times above | | | | Product Net Weight: 152.5g Battery Type: Coin Battery | | | | Working Temperature: 0-40 C Battery Model: CR2032 | | | | Writing Force: 150-300g Material: ABS | | | ## **Before Using the Calculator** ## **■** Turning Power On and Off - Press ON to turn on the calculator. - Press SHIFT AC (OFF) to turn off the calculator. ## Adjusting Display Contrast SHIFT MODE (SETUP) 6 (CONT ►) This displays the contrast adjustment screen. Use and to adjust display contrast. After the setting is the way you want, press c. You can also adjust contrast using and while the mode menu (which appears when you press well) is on the display. ## Important! If adjusting display contrast does not improve display readability, it probably means that battery power is low. Replace the battery. ## **Reading the Display** The display of the calculator shows expressions you input, calculation results, and various indicators. # #### Calculation result - If a ▶ indicator appears on the right side of the calculation result, it means the displayed calculation result continues to the right. Use ⑤ and ⑥ to scroll the calculation result display. - If a ▷ indicator appears on the right side of the input expression, it means the displayed calculation continues to the right. Use ⑤ and ⑥ to scroll the input expression display. Note that if you want to scroll the input expression while both the ▶ and ▷ indicators are displayed, you will need to press ⑥ first and then use ⑥ and ⑥ to scroll. #### Display indicators | Biopiay maloatoro | | | | | |-------------------|--|--|--|--| | This indicator: | Means this: | | | | | S | The keypad has been shifted by pressing the self key. The keypad will unshift and this indicator will disappear when you press a key. | | | | | А | The alpha input mode has been entered by pressing the key. The alpha input mode will be exited and this indicator will disappear when you press a key. | | | | | M | There is a value stored in independent memory. | | | | | ѕто | The calculator is standing by for input of a variable name to assign a value to the variable. This indicator appears after you press (STD). | | | | | RCL | The calculator is standing by for input of a variable name to recall the variable's value. This indicator appears after you press @. | | | | | STAT | The calculator is in the STAT Mode. | | | | | CMPLX | The calculator is in the CMPLX Mode. | | | | | MAT | The calculator is in the MATRIX Mode. | | | | | VCT | The calculator is in the VECTOR Mode. | | | | | D | The default angle unit is degrees. | | | | | R | The default angle unit is radians. | | | | | G | The default angle unit is grads. | | | | | FIX | A fixed number of decimal places is in effect. | | | | | SCI | A fixed number of significant digits is in effect. | | | | | Math | Natural Display is selected as the display format. | | | | | ▼▲ | Calculation history memory data is available and can be replayed, or there is more data above/below the current screen. | | | | Disp The display currently shows an intermediate result of a multi-statement calculation. **Important:** For some type
of calculation that takes a long time to execute, the display may show only the above indicators (without any value) while it performs the calculation internally. ## **Using Menus** Some of the calculator's operations are performed using menus. Pressing [[600]] or [600], for example, will display a menu of applicable functions. The following are the operations you should use to navigate between menus. - You can select a menu item by pressing the number key that corresponds to the number to its left on the menu screen. - The ▼ indicator in the upper right corner of a menu means there is another menu below the current one. The ▲ indicator means another menu above. Use ⊙ and ⑥ to switch between menus. - To close a menu without selecting anything, press AC. ## **Specifying the Calculation Mode** | When you want to perform this type of operation: | Perform this key operation: | |--|-----------------------------| | General calculations | WOOE 1 (COMP) | | Complex number calculations | WODE 2 (CMPLX) | | Statistical and regression calculations | WODE 3 (STAT) | | Calculations involving specific number systems (binary, octal, decimal, hexadecimal) | WOOE 4 (BASE-N) | | Equation solution | WODE 5 (EQN) | | Matrix calculations | MODE 6 (MATRIX) | | Generation of a number table based on an expression | MODE 7 (TABLE) | | Vector calculations | WODE 8 (VECTOR) | Note: The initial default calculation mode is the COMP Mode. ## **Configuring the Calculator Setup** Underlined (____) settings are initial defaults. 1 MthIO 2 LineIO Specifies the display format. **Natural Display (MthIO)** causes fractions, irrational numbers, and other expressions to be displayed as they are written on paper. | 4
5+3 | 0 | Math ▲ 22 15 | |----------|---|---------------| | | | | MthIO: Selects MathO or LineO. MathO displays input and calculation results using the same format as they are written on paper. LineO displays input the same way as MathO. but calculation results are displayed in linear format. **Linear Display (LineIO)** causes fractions and other expressions to be displayed in a single line Note: • The calculator switches to Linear Display automatically whenever you enter the STAT, BASE-N, MATRIX, or VECTOR Mode. • In this manual, the MATH symbol next to a sample operation indicates Natural Display (MathO), while the IUNE symbol indicates Linear Display. 3 Deg 4 Rad 5 Gra Specifies degrees, radians or grads as the angle unit for value input and calculation result display. Note: In this manual, the Deg symbol next to a sample operation indicates degrees, while the Rad symbol indicates radians. **⑤ Fix ⑦ Sci ⑧ Norm** Specifies the number of digits for display of a calculation result. Fix: The value you specify (from 0 to 9) controls the number of decimal places for displayed calculation results. Calculation results are rounded off to the specified digit before being displayed. Example: LINE $100 \div 7 = 14.286$ (Fix 3) 14.29 (Fix 2) Sci: The value you specify (from 1 to 10) controls the number of significant digits for displayed calculation results. Calculation results are rounded off to the specified digit before being displayed. Example: LINE $1 \div 7 = 1.4286 \times 10^{-1}$ (Sci 5) 1.429×10^{-1} (Sci 4) **Norm:** Selecting one of the two available settings (<u>Norm 1</u>, Norm 2) determines the range in which results will be displayed in non-exponential format. Outside the specified range, results are displayed using exponential format. Norm 1: $10^{-2} > lxl$, $lxl \ge 10^{10}$ Norm 2: $10^{-9} > lxl$, $lxl \ge 10^{10}$ Example: LINE $1 \div 200 = 5 \times 10^{-3}$ (Norm 1) 0.005 (Norm 2) ▼ ① ab/c ▼ ② d/c Specifies either mixed fraction (ab/c) or improper fraction (d/c) for display of fractions in calculation results. **③ 3 CMPLX** 1 a+bi; 2 r∠ θ Specifies either rectangular coordinates (a+bi) or polar coordinates $(r∠\theta)$ for EQN Mode solutions. ◆ Sip inp input; 2 Comma Specifies whether to display a dot or a a comma for the calculation result decimal point. A dot is always displayed during input. Note: When dot is selected as the decimal point, the separator for multiple results is a comma (.). When comma is selected, the separator is a semicolon (:). ## **Initializing Calculator Settings** Perform the following procedure to initialize the calculator, which returns the calculation mode to COMP and returns all other settings, including setup menu settings, to their initial defaults. SHIFT 9 (CLR) 1 (Setup) = (Yes) ## **Inputting Expressions and Values** ## **Basic Input Rules** Calculations can be input in the same form as they are written. When you press \boxminus the priority sequence of the input calculation will be evaluated automatically and the result will appear on the display. - *1 Input of the closing parenthesis is required for sin, sinh, and other functions that include parentheses. - *2 These multiplication symbols (x) can be omitted. A multiplication symbol can be omitted when it occurs immediately before an opening parenthesis, immediately before sin or other function that includes parentheses, immediately before the Ran# (random number) function, or immediately before a variable (A, B, C, D, E, F, M, X, Y), scientific constants, \(\pi\) or \(\text{to}\). - *3 The closing parenthesis immediately before the operation can be omitted. Note: • If the calculation becomes longer than the screen width during input, the screen will scroll automatically to the right and the ◀ indicator will appear on the display. When this happens, you can scroll back to the left by using ④ and ⑥ to move the cursor. • When Linear Display is selected, pressing ⑥ will cause the cursor to jump to the beginning of the calculation, while 쥇 will jump to the end. • When Natural Display is selected, pressing ⑥ while the cursor is at the end of the input calculation will cause it to jump to the beginning, while pressing ⑥ while the cursor is at the beginning will cause it to jump to the end. • You can input up to 99 bytes for a calculation. Each numeral, symbol, or function normally uses one byte. Some functions require three to 13 bytes. • The cursor will change shape to ■ when there are 10 bytes or less of allowed input remaining. If this happens, end calculation input and then press □. ## Calculation Priority Sequence The priority sequence of input calculations is evaluated in accordance with the rules below. When the priority of two expressions is the same, the calculation is performed from left to right. | 1st | Parenthetical expressions | |------|--| | 2nd | Functions that require an argument to the right and a closing parenthesis ")" following the argument. | | 3rd | Functions that come after the input value $(x^2, x^3, x^{-1}, x!, \circ, ", \circ, ", \circ, ", \circ, ", \circ, ", \circ, t)$, powers (x^{\bullet}) , roots $(\sqrt[\bullet]{-})$ | | 4th | Fractions | | 5th | Negative sign (–), base- n symbols (d, h, b, o) Note: When squaring a negative value (such as -2), the value being squared must be enclosed in parentheses (\frown \bigcirc 2 \frown \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 3. Since x^2 has a higher priority than the negative sign, inputting \bigcirc 2 \bigcirc 2 \bigcirc 3 \bigcirc 8 would result in the squaring of 2 and then appending a negative sign to the result. Always keep the priority sequence in mind, and enclose negative values in parentheses when required. | | 6th | Metric conversion commands (cm \blacktriangleright in, etc.), STAT Mode estimated values $(\hat{x}, \hat{y}, \hat{x}_1, \hat{x}_2)$ | | 7th | Multiplication where the multiplication sign is omitted | | 8th | Permutation (nPr) , combination (nCr) , complex number polar coordinate symbol (\angle) | | 9th | Dot product (·) | | 10th | Multiplication, division (×, ÷) | | 11th | Addition, subtraction (+, -) | | 12th | Logical AND (and) | | 13th | Logical OR, XOR, XNOR (or, xor, xnor) | | | | ## Inputting with Natural Display Selecting Natural Display makes it possible to input and display fractions and certain functions ($\log_1 x^2, x^3, x^3, \sqrt{s}, \sqrt{s}, \sqrt{s}, \sqrt{s}, x^1, 10^{\bullet}, x^{-1}, 10^{\bullet}, e^{\bullet}, \int_1 dt dx, \Sigma$, Abs) just as they are written in your textbook. Important: • Certain types of expressions can cause the height of a calculation formula to be greater than one display line. The maximum allowable height of a calculation formula is two display screens (31 dots × 2). Further input will become impossible if the height of the calculation you are inputting exceeds the allowable limit. • Nesting of functions and parentheses is allowed. Further input will become impossible if you nest too many functions and/or parentheses. If this happens, divide the calculation into multiple parts and calculate each part separately. # Using Values and Expressions as Arguments (Natural Display only) A value or an expression that you have already input can be used as the argument of a function. After you have input $\frac{7}{6}$, for example, you can make it the argument of $\sqrt{-}$, resulting in $\sqrt{\frac{7}{8}}$. As shown above, the value or expression to the right of the cursor after me me (INS) are pressed becomes the argument of the function that is specified next. The range encompassed as the argument is everything up to the
first open parenthesis to the right, if there is one, or everything up to the first function to the right (sin/30). log2(4), etc.) This capability can be used with the following functions: \blacksquare , [0,1], [E], #### Overwrite Input Mode (Linear Display only) You can select either insert or overwrite as the input mode, but only while Linear Display is selected. In the overwrite mode, text you input replaces the text at the current cursor location. You can toggle between the insert and overwrite modes by performing the operations: [sm] [E] (INS). The cursor appears as *\mathbf{I}" in the insert mode and as *\mathbf{I}" in the overwrite mode. Note: Natural Display always uses the insert mode, so changing display format from Linear Display to Natural Display will automatically switch to the insert mode. ## Correcting and Clearing an Expression To delete a single character or function: Move the cursor so it is directly to the right of the character or function you want to delete, and then press [65]. In the overwrite mode, move the cursor so it is directly under the character or function you want to delete, and then press [66]. To insert a character or function into a calculation: Use and to move the cursor to the location where you want to insert the character or function and then input it. Be sure always to use the insert mode if Linear Display is selected. To clear all of the calculation you are inputting: Press AC. ## **Toggling Calculation Results** While Natural Display is selected, each press of [m] will toggle the currently displayed calculation result between its fraction form and decimal form, its $\sqrt{}$ form and decimal form, or its π form and decimal form. $$\pi \div 6 = \frac{1}{6}\pi = 0.5235987756$$ $$\text{MATH}$$ $$\text{SMF} \text{ MO}(\pi) \oplus 6 \text{ E}$$ $$\frac{1}{6}\pi$$ $$\text{SM} \text{ O.5235987756}$$ $$\text{O.5235987756}$$ While Linear Display is selected, each press of will toggle the currently displayed calculation result between its decimal form and fraction form. Important: • Depending on the type of calculation result that is on the display when you press the [50] key, the conversion process may take some time to perform. • With certain calculation results, pressing the [50] key will not convert the displayed value. • You cannot switch from decimal form to mixed fraction form if the total number of digits used in the mixed fraction (including integer, numerator, denominator, and separator symbols) is greater than 10. **Note:** With Natural Display (MathO), pressing \P instead of after inputiting a calculation will display the calculation result in decimal form. Pressing \P after that will switch to the fraction form or π form of the calculation result. The $\sqrt{}$ form of the result will not appear in this case. ## **Basic Calculations** ## Fraction Calculations Note that the input method for fractions is different, depending upon whether you are using Natural Display or Linear Display. Note: • Mixing fractions and decimal values in a calculation while Linear Display is selected will cause the result to be displayed as a decimal value. • Fractions in calculation results are displayed after being reduced to their lowest terms. To switch a calculation result between improper fraction and mixed fraction form: Perform the following key operation: $[SHF][SHP](a\frac{b}{c}, +\frac{d}{c})$ To switch a calculation result between fraction and decimal form: Press [80]. ### Percent Calculations Inputting a value and pressing $\mbox{\fontfamily support}(\%)$ causes the input value to become a percent. | 30 | 150 🗶 20 SHFT ((%) 🖃 | 150 × 20% = 30 | |------|---|----------------------| | 75 | age of 880 is 660. (75%)
660 🔁 880 冊 € (%) 🖃 | Calculate what perce | | 2875 | (2875)
500 ★ 2500 🗴 15 페 ((%) 🖃 | Increase 2500 by 15° | | | (2625) | Discount 3500 by 259 | ## Degree, Minute, Second (Sexagesimal) Calculations 3500 → 3500 🗙 25 🖼 🕜 (%) 🖃 2625 Performing an addition or subtraction operation between sexagesimal values, or a multiplication or division operation between a sexagesimal value and a decimal value will cause the result to be displayed as a sexagesimal value. You also can convert between sexagesimal and decimal. The following is the input format for a sexagesimal value: {degrees} — {minutes} — {seconds} —. **Note:** You must always input something for the degrees and minutes, even if they are zero. | 2°20′30″ + 39′3 | 0" = 3°00'00"
::::::::::::::::::::::::::::::::::: | 3°0′0″ | |-----------------|--|----------| | Convert 2°15′18 | 3" to its decimal equivalent. | 2015/10" | | | 2 \cdots 15 \cdots 18 🖙 🖃 | 2°15 18 | ## (Converts sexagesimal to decimal.) . 2.255 (Converts decimal to sexagesimal.) . 2°15′18″ ### Multi-Statements You can use the colon character (:) to connect two or more expressions and execute them in sequence from left to right when you press \blacksquare . | 3+3:3×3 | 3 🛨 3 💵 📜 (:) 3 🗶 3 🖃 | 6 | |---------|-----------------------|---| | | | 9 | ## Using Engineering Notation A simple key operation transforms a displayed value to engineering notation. | notation. | | | |--|---------------------|-----------| | Transform the value 1234 to engineer decimal point to the right. | ing notation, shift | ing the | | | 1234 🖃 | 1234 | | | FNG | 1.234×103 | 1234×100 Transform the value 123 to engineering notation, shifting the decimal point to the left. 123 **■ 123**SHIFT ENG(←) 0.123×10³ SHIFT ENG(←) 0.000123×10⁶ ## Calculation History In the COMP, CMPLX, or BASE-N Mode, the calculator remembers up to approximately 200 bytes of data for the newest calculation. You can scroll through calculation history contents using ♠ and ❖. | 1 🔳 | 1 🛨 1 | 1+1=2 | |--------|-----------------------|-----------| | 2 = 4 | 2 🛨 2 | 2 + 2 = 4 | | -3 = (| 3 🛨 3 | 3 + 3 = 6 | | (.) 🖎 | (Scrolls back.) | | | n.) 📤 | (Scrolls back again.) | | Note: Calculation history data is all cleared whenever you press (M), when you change to a different calculation mode, when you change the display format, or whenever you perform any reset operation. ### Replay While a calculation result is on the display, you can press \P or \P to edit the expression you used for the previous calculation. Note: If you want to edit a calculation when the ▶ indicator is on the right side of a calculation result display (see "Reading the Display"), press and then use ♠ and ♠ to scroll the calculation. ## **Answer Memory (Ans)** The last calculation result obtained is stored in Ans (answer) memory. Ans memory contents are updated whenever a new calculation result is displayed. ## Variables (A, B, C, D, E, F, X, Y) Your calculator has eight preset variables named A, B, C, D, E, F, X, and Y. You can assign values to variables and also use the variables in calculations. | To assign the result of 3 + 5 to variable A | | |--|----| | 3 ★ 5 SHIF ROL (STO) (¬) (A) | 8 | | To multiply the contents of variable A by 10 | | | (Continuing) WM ← (A) X 10 = | 80 | | To recall the contents of variable A (Continuing) (A) | 8 | | To clear the contents of variable A 0 SHFT RCL (STO) (A) | 0 | ## Independent Memory (M) You can add calculation results to or subtract results from independent memory. The "M" appears on the display when there is any value other than zero stored in independent memory. | To clear the contents of M | O SHIFT RCL (STO) M+ (M) | |--|----------------------------| | \nearrow To add the result of 10 \times 5 to M | (Continuing) 10 🗷 5 🕪 50 | | To subtract the result of 10 + 5 from (Continuing | | | To recall the contents of M | (Continuing) RCI M+ (M) 35 | Note: Variable M is used for independent memory. ## Clearing the Contents of All Memories Ans memory, independent memory, and variable contents are retained even if you press @, change the calculation mode, or turn off the calculator. Perform the following procedure when you want to clear the contents of all memories. SHIFT 9 (CLR) 2 (Memory) = (Yes) ## **Function Calculations** For actual operations using each function, see the "Examples" section following the list below. π : π is displayed as 3.141592654, but π = 3.14159265358980 is used for internal calculations e : e is displayed as 2.718281828, but e = 2.71828182845904 is used for internal calculations. sin, cos, tan, sin-1, cos-1, tan-1: Trigonometric functions. Specify the angle unit before performing calculations. See ℓ 1. sinh, cosh, tanh, sinh⁻¹, cosh⁻¹, tanh⁻¹: Hyperbolic functions. Input a function from the menu that appears when you press $\overline{\mathbb{W}}$. The angle unit setting does not affect calculations. See $\underline{\mathbb{Z}}_2$. o, r, 9: These functions specify the angle unit. ° specifies degrees, ^r radians, and ⁹ grads. Input a function from the menu that appears when you perform the following key operation: Ser∏ Mo (DRG ►). See ∠9. 10[®], e[®]: Exponential functions. Note that the input method is different depending upon whether you are using Natural Display or Linear Display. See 24. \log : Logarithmic function. Use the \boxed{n} key to input $\log_a b$ as $\log{(a,b)}$. Base 10 is the default setting if you do not input anything for a. The \boxed{n} key also can be used for input, but only while Natural Display is selected. In this case, you must input a value for the base. See \boxed{f}_5 . In: Natural logarithm to base e. See \$\int_6\$. x^2 , x^3 , x^4 , $\sqrt{-}$, $\sqrt{-}$, $\sqrt{-}$, $\sqrt{-}$, $\sqrt{-}$. Powers, power roots, and reciprocals. Note that the input methods for x^4 , $\sqrt{-}$, $\sqrt{-}$, $\sqrt{-}$, and $\sqrt{-}$ are different depending upon whether you are using Natural Display or Linear
Display. See $\sqrt[6]{7}$. Note: • The following functions cannot be input in consecutive sequence: x^2 , x^3 , x^4 , x^4 . If you input $2[\mathbb{Z}]$ \mathbb{Z}^2 , for example, the final \mathbb{Z}^2 will be ignored. To input 2^{2^2} , input $2[\mathbb{Z}]$, press the key, and then press \mathbb{Z}^3 (MATH). • x^2 , x^3 , x^{-1} can be used in complex number calculations. $\frac{d}{dx}$: Function for approximation of the derivative based on the central difference method. Natural Display input syntax is $\frac{d}{dx}(f(x))|_{x=a^t}$, while Linear Display input syntax is $\frac{d}{dx}(f(x), a, tol)$. tol specifies tolerance, which becomes 1 × 10⁻¹⁰ when nothing is input for tol. Also see "integration and Differential Calculation Precautions" for more information. See \mathscr{D}_9 . \equiv : Function that, for a specified range of f(x), determines sum $\sum_{\substack{x=a\\x=a}}^{b} (f(x))$ = f(a) + f(a+1) + f(a+2) + ... + f(b). Natural Display input syntax is $\sum_{x=a}^{b} (f(x))$, while Linear Display input syntax is $\Sigma(f(x), a, b)$. a and b are integers that can be specified within the range of $-1 \times 10^{10} < a \le b < 1 \times 10^{10}$. See $\triangle 10$. Note: The following cannot be used in f(x), a, or b: Pol, Rec. $\int_{1}^{1} ddx$, Σ . Pol, Rec: Pol converts rectangular coordinates to polar coordinates, while Rec converts polar coordinates to rectangular coordinates. See 21. Specify the angle unit before performing calculations. The calculation result for r and θ and for r and y are each assigned respectively to variables X and Y. Calculation result θ is displayed in the range of $-180^\circ < \theta \le 180^\circ$. #### x!: Factorial function. See \mathcal{Q}_{12} . **Abs:** Absolute value function. Note that the input method is different depending upon whether you are using Natural Display or Linear Display. See ∠3. Ran#: Generates a 3-digit pseudo random number that is less than 1. The result is displayed as a fraction when Natural Display is selected. See 14. **RanInt#:** For input of the function of the form RanInt#(a, b), which generates a random integer within the range of a to b. See b15. nPr, nCr: Permutation (nPr) and combination (nCr) functions. See $\underline{\mathcal{D}_{16}}$. Note: Using functions can slow down a calculation, which may delay display of the result. Do not perform any subsequent operation while waiting for the calculation result to appear. To interrupt an ongoing calculation before its result appears, press &@. ### Integration and Differential Calculation Precautions - Integration and differential calculations can be performed in the COMP Mode (MODE (1)) only. - The following cannot be used in f(x), a, b, or tol: Pol, Rec, J, d/dx, Σ - When using a trigonometric function in f(x), specify Rad as the angle unit. - A smaller tol value increases precision, but it also increases calculation time. When specifying tol, use value that is 1 × 10⁻¹⁴ or greater. #### **Precautions for Integration Calculation Only** - Integration normally requires considerable time to perform. - For f(x) < 0 where $a \le x \le b$ (as in the case of $\int_0^1 3x^2 2 = -1$), calculation will produce a negative result. - Depending on the content of f(x) and the region of integration, calculation error that exceeds the tolerance may be generated, causing the calculator to display an error message. #### Precautions for Differential Calculation Only - If convergence to a solution cannot be found when *tol* input is omitted, the *tol* value will be adjusted automatically to determine the solution. - Non-consecutive points, abrupt fluctuation, extremely large or small points, inflection points, and the inclusion of points that cannot be differentiated, or a differential point or differential calculation result that approaches zero can cause poor precision or error. ## Tips for Successful Integration Calculations When a periodic function or integration interval results in positive and negative f(x) function values Perform separate integrations for each cycle, or for the positive part and the negative part, and then combine the results. When integration values fluctuate widely due to minute shifts in the integration interval Divide the integration interval into multiple parts (in a way that breaks areas of wide fluctuation into small parts), perform integration on each part, and then combine the results. ## Examples | <u></u> | sin 30°= 0.5
sin-10.5 = 30° |
sin 30) =
SHFT sin (sin-1) 0.5) = | 0.5
30 | |---------|--------------------------------|--|-----------| | No. | -1-1-4 4 4 77 | | | 2 sinh 1 = 1.175201194 Image: [sinh) 1 □ □ 1.175201194 cosh⁻¹ 1 = 0 Image: [sinh) 1 □ □ 1.175201194 cosh⁻¹ 1 □ 0 Image: [sinh) 1 □ □ 1.175201194 45 3 4 4 2 **76** To calculate In 90 (= log∈ 90) to three significant digits (Sci 3) LINE | MODE (SETUP) | 7 (Sci) | 3 In 90 D = 4.50×10° $1.2 \times 10^3 = 1200$ MATH 1200 $1.2 \times 10 \times 3 =$ $(1+1)^{2+2} = 16$ MATH (1 + 1) $x^2 + 2 =$ 16 $(5^2)^3 = 15625$ () 5 (x^2) SHFT (x^2) (x^3) 15625 $\sqrt[5]{32} = 2$ SHIFT (□√=) 5 (■ 32 (=) 2 MATH 5 SHFT ((□√□) 32 () (□ To calculate $\sqrt{2} \times 3 = 4.242640687...$ to three decimal places (Fix 3) SHIFT MODE (SETUP) 6 (Fix) 3 MATH **№ ×** 3 **=** 3√2 SHIFT = 4.243 LINE √■2 □ ▼3 ■ 4 243 $\int_{\mathbf{8}}^{\epsilon} \int_{\mathbf{1}}^{\epsilon} \ln(x) = 1$ 1 MATH (P) In (X) (X) (X) (Y) (Y) (Y) (Y) (Y) (Y) (Y)(,) 1 SHIFT \bigcirc (,) ALPHA \times 10° (e) \bigcirc \bigcirc 1 To obtain the derivative at point $x = \pi/2$ for the function $y = \sin(x)$ Rad MATH SHFT (□ (♣) Sin ALPHA () (X) () (□) [SHIF] [x10^x] (π) (□) 2 [□] n SHIFT (#(#) Sin ALPHA () (X) () LINE SHIFT \bigcirc (,) SHIFT \times 10 7 (π) \bigcirc 2 \bigcirc \bigcirc **10** $\sum_{x=0}^{\infty} (x+1) = 20$ SHFT $[og_{\bullet}]$ (Σ =) ALPHA \bigcap (X) \bigoplus 1 \bigcirc 5 \bigcirc 20 SHIFT $[\log_{\bullet} \mathbb{D}(\Sigma =)]$ ALPHA $\mathbb{D}(X) + 1$ SHIFT $\mathbb{D}(.)1$ SHIFT () (.) 5 () (=) 20 **11** To convert rectangular coordinates $(\sqrt{2}, \sqrt{2})$ to polar coordinates Deg r=2.0=45 MATH SHET (Pol) √ 2 (▶ SHET () (.) √ 2 (▶ () □ SHFT (Pol) √ 2 D SHFT D (.) √ 2 D D = 2 LINE r= $\theta = 45$ To convert polar coordinates ($\sqrt{2}$, 45°) to rectangular coordinates Deg SHFT (Rec) √ 2 (N SHFT () (,) 45 () = X=1, Y=1(5 + 3) SHFT x(x!) =40320 13 $|2 - 7| \times 2 = 10$ MATH SHIFT [hyp] (Abs) 2 - 7 (►) X 2 = 10 LINE SHIFT [IVP] (Abs) 2 - 7 7 X 2 = 10 14 To obtain three random three-digit integers 1000 [SHFT] [• (Ran#) [=] 459 48 (Results shown here are for illustrative purposes only. Actual results will differ.) To generate random integers in the range of 1 to 6 (RanInt) 1 (R To determine the number of permutations and combinations possible when selecting four people from a group of 10 Permutations: 10 ₪ 🕽 (NPr) 4 🚍 5040 Combinations: 10 ₪ 🗗 (NCr) 4 🚍 210 77 To perform the following calculations when Fix 3 is selected for the number of display digits: 10 ÷ 3 × 3 and Rnd(10 ÷ 3) × 3 INT SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (3) 10 ⊕ 3 ★ 10.000 SIMPLE (SETUP) (6) (Fix) (F # Complex Number Calculations (CMPLX) To perform complex number calculations, first press $\boxed{02}$ $\boxed{(CMPLX)}$ to enter the CMPLX Mode. You can use either rectangular coordinates (a+bi) or polar coordinates $(r \pm b)$ to input complex numbers. Complex number calculation results are displayed in accordance with the complex number format setting on the setup menu. $2 \text{ with } \Theta(\angle) 45 \equiv \sqrt{2} + \sqrt{2} \mathbf{i}$ $\sqrt{2} + \sqrt{2} \mathbf{i} = 2 \angle 45 \text{ MATH Deg} (Complex number format: } r\angle\theta)$ $\sqrt{2} + \sqrt{2} \mathbf{i} = 2 \angle 45 \text{ MATH Deg} (Complex number format: } r\angle\theta)$ $\sqrt{2} + \sqrt{2} \mathbf{i} = 2 \angle 45 \text{ MATH Deg} (Complex number format: } r\angle\theta)$ **Note:** • If you are planning to perform input and display of the calculation result in polar coordinate format, specify the angle unit before starting the calculation. • The θ value of the calculation result is displayed in the range of $-180^\circ < \theta \leq 180^\circ$. • Display of the calculation result while Linear Display is selected will show a and bi (or r and θ) on separate lines. ## CMPLX Mode Calculation Examples To obtain the conjugate complex number of 2 + 3i (Complex number format: a + bi) SHIFT 2 (CMPLX) 2 (Conjg) 2 \oplus 3 ENG (i) \supset 2-3i To obtain the absolute value and argument of 1+i MAIH Peg Absolute Value: (F) = (Abs) = Absolute Absolut # Using a Command to Specify the Calculation Result Format Either of two special commands ($\blacktriangleright r \ge \theta$ or $\blacktriangleright a + bi$) can be input at the end of a calculation to specify the display format of the calculation results. The command overrides the calculator's complex number format setting. $$\begin{array}{c} \sqrt{2} + \sqrt{2} \ i = 2 \angle 45, \ 2 \angle 45 = \sqrt{2} + \sqrt{2} \ i & \text{MATI} & \text{Deg} \\ \hline \text{(a) 2 } \textcircled{\bullet} & \text{(a) 2 } \textcircled{\bullet} & \text{(b) (i) Seff } \ 2 \text{ (CMPLX) 3 (} \textcircled{\bullet} r \angle \theta) \boxminus & \text{2} \angle 45 \\ \hline \text{2 Seff } & \text{(a) } \angle 45 \text{ Seff } \ 2 \text{ (CMPLX) 4 (} \textcircled{\bullet} a + b i) \boxminus & \text{\sqrt{2}} + \sqrt{2} \ i \\ \hline \end{array}$$ ## **Using CALC** CALC lets you save calculation expressions that contain variables, which you can then recall and execute in the COMP Mode ([www] 1]) and the CMPLX
Mode ([www] 2]). The following describes the types of expressions you can save with CALC. - Expressions: 2X + 3Y, 2AX + 3BY + C, A + Bi - Multi-statements: X + Y : X (X + Y) - Equalities with a single variable on the left and an expression including variables on the right: A = B + C, Y = X² + X + 3 (Use (IMM) (Im) to input the equals sign of the equality.) (Use MPHI CALC) (=) to input the equals sign of the equality.) To exit CALC: AC Note: During the time from when you press [CALC] until you exit CALC by ## pressing (AC), you should use Linear Display input procedures for input. To exit CALC: AC ## **Using SOLVE** SOLVE uses Newton's Law to approximate the solution of equations. Note that SOLVE can be used in the COMP Mode ([000] 1) only. The following describes the types of equations whose solutions can be obtained using SOLVE. - Equations that include variable X: X² + 2X 2, Y = X + 5, X = sin(M), X + 3 = B + C - SOLVE solves for X. An expression like $X^2 + 2X 2$ is treated as $X^2 + 2X 2 = 0$. - Equations input using the following syntax: {equation}, {solution variable} SOLVE solves for Y, for example, when an equation is input as: Y = X + 5, \forall **Important:** • If an equation contains input functions that include an open parenthesis (such as sin and log), do not omit the closing parenthesis. • The following functions are not allowed inside of an equation: $\int_{\cdot} dl dx, \; \Sigma,$ Pol, Rec. Note: During the time from when you press 屬門 延迟(SOLVE) until you exit SOLVE by pressing 極, you should use Linear Display input procedures for input. Important: • Depending on what you input for the initial value for X (solution variable), SOLVE may not be able to obtain solutions. If this happens, try changing the initial value so they are closer to the solution. • SOLVE may not be able to determine the correct solution, even when one exists. • SOLVE uses Newton's Law, so even if there are multiple solutions, only one of them will be returned. • Due to limitations in Newton's Law, solutions tend to be difficult to obtain for equations like the following: $v = \sin(x)$, $v = e^{v}$, $v = \sqrt{v}$. #### Solution Screen Contents Solutions are always displayed in decimal form. Equation (The equation you input.) (Left Side) - (Right Side) result "(Left Side) – (Right Side) result" shows the result when the right side of the equation is subtracted from the left side, after assigning the obtained value to the variable being solved for. The closer this result is to zero, the higher the accuracy of the solution. #### Continue Screen SOLVE performs convergence a preset number of times. If it cannot find a solution, it displays a confirmation screen that shows "Continue: [=]", asking if you want to continue. Press (=) to continue or AC to cancel the SOLVE operation. | 3 🖃 | Solve for X 0 | |---|--| | Input an initial value for X (Here, input 1): 1 | Y=X ² -X+1 | | ≡ 7 ≡ ≡ | Y=X ² -X+1 0 Meth A
X= 3
L-R= 0 | | □ 13 □ □ | Y=X ² -X+1 0 Noh A
X= 4
L-R= 0 | ## **Statistical Calculations (STAT)** To start a statistical calculation, perform the key operation [1928] (STAT) to enter the STAT Mode and then use the screen that appears to select the type of calculation you want to perform. | To select this type of statistical calculation:
(Regression formula shown in parentheses) | Press this key: | |--|-------------------------| | Single-variable (X) | 1 (1-VAR) | | Paired-variable (X, Y), linear regression ($y = A + Bx$) | 2 (A+BX) | | Paired-variable (X, Y), quadratic regression $(y = A + Bx + Cx^2)$ | 3 (_+CX²) | | Paired-variable (X, Y), logarithmic regression $(y = A + Blnx)$ | 4 (In X) | | Paired-variable (X, Y), e exponential regression $(y = Ae^{BX})$ | 5 (<i>e</i> ^X) | | Paired-variable (X, Y), ab exponential regression $(y = AB^x)$ | 6 (A•B^X) | | Paired-variable (X, Y), power regression $(y = Ax^B)$ | 7 (A•X^B) | | Paired-variable (X, Y), inverse regression $(y = A + B/x)$ | 8 (1/X) | Pressing any of the above keys (1 to 8) displays the Stat Editor. Note: When you want to change the calculation type after entering the STAT Mode, perform the key operation [set] [] (STAT) [] (Type) to display the calculation type selection screen. ## Inputting Data Use the Stat Editor to input data. Perform the following key operation to display the Stat Editor: Self ①(STAT)②(Data). The Stat Editor provides 80 rows for data input when there is an X column only, 40 rows when there are X and FREQ columns or X and Y columns, or 26 rows when there are X, Y, and FREQ columns. Note: Use the FREQ (frequency) column to input the quantity (frequency) of identical data items. Display of the FREQ column can be turned on (displayed) or off (not displayed) using the Stat Format setting on the setup menu. To select linear regression and input the following data: (170, 66), (173, 68), (179, 75) Important: • All data currently input in the Stat Editor is deleted whenever you exit the STAT Mode, switch between the single-variable and a paired-variable statistical calculation type, or change the Stat Format setting on the setup menu. • The following operations are not supported by the Stat Editor. IMP, Sem IMP (M-), Sem IMP (STO). Pol, Rec, and multi-statements also cannot be input with the Stat Editor. To change the data in a cell: In the Stat Editor, move the cursor to the cell that contains the data you want to change, input the new data, and then press \equiv 1. To delete a line: In the Stat Editor, move the cursor to the line that you want to delete and then press 📵 . To delete all Stat Editor contents: In the Stat Editor, perform the following key operation: [SIFT] [1] (STAT) [3] (Edit) [2] (Del-A). ## **Obtaining Statistical Values from Input Data** To obtain statistical values, press \bigcirc while in the Stat Editor and then recall the statistical variable $(\alpha_x, \Sigma^{\nu^2}, \text{etc.})$ you want. Supported statistical variables and the keys you should press to recall them are shown below. For single-variable statistical calculations, the variables marked with an asterisk (*) are available. ``` Sum: \Sigma x^{2*}, \Sigma x^{*}, \Sigma y^{2}, \Sigma y, \Sigma xy, \Sigma x^{3}, \Sigma x^{2}y, \Sigma x^{4} [SHF] [1] (STAT) [3] (Sum) [1] to [8] ``` Number of Items: n^* , Mean: \bar{x}^* , \bar{y} , Population Standard Deviation: σ_{x^*} , σ_{y} , Sample Standard Deviation: s_{x^*} , s_{y} Gy, Sample Standard Deviation: Sx", S [SHFT] [1] (STAT) [4] (Var) [1] to [7] Regression Coefficients: A, B, Correlation Coefficient: r, Estimated Values: \hat{x} , \hat{y} SHIF 1 (STAT) 5 (Reg) 1 to 5 Regression Coefficients for Quadratic Regression: A, B, C, Estimated Values: $\hat{x}_1, \hat{x}_2, \hat{y}$ SHIFT 1 (STAT) 5 (Reg) 1 to 6 - See the table at the beginning of this section of the manual for the regression formulas. - \hat{X}_1, \hat{X}_2 and \hat{Y} are not variables. They are commands of the type that take an argument immediately before them. See "Calculating Estimated Values" for more information. Minimum Value: minX*, minY, Maximum Value: maxX*, maxY SHIFT 1 (STAT) 6 (MinMax) 1 to 4 Note: While single-variable statistical calculation is selected, you can input the functions and commands for performing normal distribution calculation from the menu that appears when you perform the following key operation: [劉] [1] (STAT) [5] (Distr). See "Performing Normal Distribution Calculations" for details 12 To input the single-variable data $x = \{1, 2, 2, 3, 3, 3, 4, 4, 5\}$, using the FREQ column to specify the number of repeats for each items $\{\{xn; freqn\} = \{1;1,2;2,3;3,4;2,5;1\}\}$, and calculate the mean and population standard deviation. SHIFT MODE (SETUP) (4 (STAT) (ON) 000 3 (STAT) 1 (1-VAR) 1 = 2 = 3 = 4 = 5 = ♥ ♠ 1 = 2 = 3 = 2 = AG SHFT 1 (STAT) 4 (Van) 2 (x) = AC SHIFT 1 (STAT) 4 (Var) 3 (σ_x) 1.154700538 Results: Mean: 3 Population Standard Deviation: 1.154700538 To calculate the linear regression and logarithmic regression correlation coefficients for the following paired-variable data and determine the regression formula for the strongest correlation: (x, y) = (20, 3150), (110, 7310), (200, 8800), (290, 9310). Specify Fix 3 (three decimal places) for results. SHIFT MODE (SETUP) (STAT) (OFF) SHIFT MODE (SETUP) 6 (Fix) 3 (MOE) 3 (STAT) 2 (A+BX) 20 = 110 = 200 = 290 = ◆ € 3150 = 7310 = 8800 = 9310 = AC SHFT 1 (STAT) 5 (Reg) 3 (r) ≡ AC SHFT 1 (STAT) 1 (Type) 4 (In X) AC SHFT 1 (STAT) 5 (Reg) 3 (r) ≡ 0.998 AC SHIFT 1 (STAT) 5 (Reg) 1 (A) = AC SHIFT 1 (STAT) 5 (Reg) 2 (B) = -3857.984 2357.532 Results: Linear Regression Correlation Coefficient: 0.923 Logarithmic Regression Correlation Coefficient: 0.998 Logarithmic Regression Formula: y = -3857.984 + 2357.532lnx ## Calculating Estimated Values Based on the regression formula obtained by paired-variable statistical calculation, the estimated value of y can be calculated for a given x-value. The corresponding x-value (two values, x- and x, in the case of quadratic regression) also can be calculated for a value of y in the regression formula To determine the estimate value for y when x = 160 in the regression formula produced by logarithmic regression of the data in 2. Specify Fix 3 for the result. (Perform the following operation after completing the operations in 2.) AC 160 SHIFT 1 (STAT) 5 (Reg) 5 (ŷ) 8106.898 Result: 8106.898 Important: Regression coefficient, correlation coefficient, and estimated value calculations can take considerable time when there are a large number of data items. ## **Performing Normal Distribution Calculations** While single-variable statistical calculation is selected, you can perform normal distribution calculation using the functions shown below from the menu that appears when you perform
the following key operation: [STAT] (STAT) (Distr). ${f P},{f Q},{f R}$: These functions take the argument t and determine a probability of standard normal distribution as illustrated below. ▶ t: This function is preceded by the argument X, and determines the normalized variate X ► $t = \frac{X - \bar{x}}{G_K}$. For the single variable data $\{x_n : \text{freq} n\} = \{0; 1, 1; 2, 2; 1, 3; 2, 4; 2, 5; 2, 6; 3, 7; 4, 9; 2, 10; 1\}$, to determine the normalized variate ($\triangleright t$) when x = 3, and P(t) at that point up to three decimal places (Fix 3). 4 = 2 = 1 = SHIFT MODE (SETUP) T 4 (STAT) 1 (ON) SHIFT WODE (SETUP) 6 (Fix) 3 WODE 3 (STAT) 1 (1-VAR) 0 ■ 1 ■ 2 ■ 3 ■ 4 ■ 5 ■ 6 ■ 7 ■ 9 ■ 10 ■ ◆ ▶ 1 ■ 2 ■ 1 ■ 2 ■ 2 ■ 2 ■ 3 ■ AC 3 SHFT 1 (STAT) 5 (Distr) 4 (►t) = 3≱t 0 FX -0.762 **Results:** Normalized variate ($\triangleright t$): -0.762 P(t): 0.223 ## Base-n Calculations (BASE-N) Press [1008] 4 (BASE-N) to enter the BASE-N Mode when you want to perform calculations using decimal, hexadecimal, binary, and/or octal values. The initial default number mode when you enter the BASE-N Mode is decimal, which means input and calculation results use the decimal number format. Press one of the following keys to switch number modes: [20] (DEC) for decimal, [20] (HEX) for hexadecimal, [90] (BIN) for binary, or [90] (OCT) for octal. | inary mode, and | To enter the BASE-N Mode, switch to the binary mode, and calculate 11, +1, | | | | |---|--|--|--|--| | Dec
O | MODE 4 (BASE-N) | | | | | Bin
000000000000000000000000000000000000 | log (BIN) | | | | | Bin
000000000000000000000000000000000000 | 11 🕀 1 🖃 | | | | | | | | | | Continuing from above, switch to the hexadecimal mode and calculate $1F_{16} + 1_{16}$ (A) (HEX) 1 (m) (F) 1 (1) | Base-n Mode | Input/Output Ranges | | | |-------------|--|--|--| | Binary | Positive: $000000000000000000000000000000000000$ | | | | Octal | Positive: $000000000000 \le x \le 17777777777$
Negative: $200000000000 \le x \le 37777777777$ | | | | Decimal | $-2147483648 \le x \le 2147483647$ | | | Hexadecimal # Specifying the Number Mode of a Particular Input You can input a special command immediately following a value to specify the number mode of that value. The special commands are: d (decimal), h (hexadecimal), b (binary), and o (octal). To calculate $10_{10}+10_{16}+10_2+10_8$ and display the result as a decimal value AC (x² (DEC) (SHFT (3) (BASE) (▼) (1) (d) 10 (+) SHFT 3 (BASE) 👽 2 (h) 10 🛨 SHFT 3 (BASE) ▼ 3 (b) 10 + SHFT 3 (BASE) ▼ 4 (o) 10 = # Converting a Calculation Result to another Type of Value You can use any one of the following key operations to convert the currently displayed calculation result to another type of value: ☑ (DEC) (decimal), ☑ (HEX) (hexadecimal), ☑ (BIN) (binary), [☐ (OCT)(octal). To calculate $15_{10} \times 37_{10}$ in the decimal mode, and then convert the result to hexadecimal, binary, and octal AC (2 (DEC) 15 X 37 = 555 0000022B 36 (HEX) 0000022B (OCT) 000000101011 ## **Logical and Negation Operations** Your calculator provides you with logical operators (and, or, xor, xnor) and functions (Not, Neg) for logical and negation operations on binary values. Use the menu that appears when you press (I) (I) (I) (I) (II) (II) (III) (II All of the following examples are performed in the binary mode ($\[\]$ (BIN)). To determine the logical AND of 1010₂ and 1100₂ (1010₂ and 1100₂) AC 1010 (MFT) (3) (BASE) (1) (and) 1100 (三) 0000000000000001000 To determine the logical OR of 1011₂ and 11010₂ (1011₂ or 11010₂) [AC] 1011 [編輯] [3] (BASE) [2] (or) 11010 [三] 00000000000011011 To determine the logical XOR of 1010₂ and 1100₂ (1010₂ xor 1100₂) [Ac] 1010 [解] [3] (BASE) [3] (xor) 1100 (三) 00000000000000110 To determine the logical XNOR of 1111₂ and 101₂ (1111₂ xnor 101₂) ACI 1111 SHFT [3] (BASE) [4] (xnor) 101 [=] 1111111111111110101 AC (HFT 3 (BASE) 5 (Not) 1010 () = 11111111111110101 To negate (take the two's complement) of 1011012 (Neg(1011012)) AC SHIFT [3] (BASE) [6] (Neg) 101101 [7] [= 111111111111010011 Note: In the case of a negative binary, octal or hexadecimal value, the calculator converts the value to binary, takes the two's complement, and then converts back to the original number base. For decimal (base-10) values, the calculator merely adds a minus sign. ## **Equation Calculations (EQN)** You can use the following procedure in the EQN Mode to solve simultaneous linear equations with two or three unknowns, quadratic equations, and cubic equations. - 1. Press [IIII] [5] (EQN) to enter the EQN Mode. - 2. On the menu that annears, select an equation type | on the ment that appears, coloct an equation type. | | | |--|--------------------------------|--| | To select this calculation type: | Press this key: | | | Simultaneous linear equations with two unknowns | $\boxed{1}(a_nX+b_nY=c_n)$ | | | Simultaneous linear equations with three unknowns | $ (a_nX + b_nY + c_nZ = d_n) $ | | | Quadratic equation | $3(aX^2 + bX + c = 0)$ | | | Cubic equation | $4 (aX^3 + bX^2 + cX + d = 0)$ | | | | | | - Use the Coefficient Editor that appears to input coefficient values. - To solve $2x^2 + x 3 = 0$, for example, press 3 in step 2, and then input the following for the coefficients (a = 2, b = 1, c = -3): 2 = 1 = [-]3 🗐 . - To change a coefficient value you already have input, move the cursor to the appropriate cell, input the new value, and then press =. - Pressing AC will clear all of the coefficients to zero. Important: The following operations are not supported by the Coefficient Editor: M+, SHFT M+ (M-), SHFT RCL (STO). Pol, Rec, and multi-statements also cannot be input with the Coefficient Editor. - After all the values are the way you want, press =. - This will display a solution. Each press of will display another solution. Pressing while the final solution is displayed will return to the Coefficient Editor. - You can scroll between the solutions using the and keys. - To return to the Coefficient Editor while any solution is displayed, press AC. Note: • Even if Natural Display is selected, the solutions of simultaneous linear equations are not displayed using any form that includes √. • Values cannot be converted to engineering notation on the solution screen. ## Changing the Current Equation Type Setting Press [6] (EQN) and then select an equation type from the menu that appears. Changing the equation type causes the values of all Coefficient Editor coefficients to change to zero. ## **EQN Mode Calculation Examples** ## Matrix Calculations (MATRIX) Use the MATRIX Mode to perform calculations involving matrices of up to 3 rows by 3 columns. To perform a matrix calculation, you first assign data to special matrix variables (MatA, MatB, MatC), and then use the variables in the calculation as shown in the example below. ◉ (**V**) (X2=) (X₃=) the calculation as shown in the example below. 1 To assign $$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$ to MatA and $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ to MatB, and then perform the following calculations: $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ (MatA×MatB), $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ (MatA+MatB) - 1. Press MODE 6 (MATRIX) to enter the MATRIX Mode. - 2. Press 1 (MatA) 5 (2×2). - This will display the Matrix Editor for input of the elements of the 2 x 2 matrix you specified for MatA. "A" stands for "MatA". - 3. Input the elements of MatA: 2 \equiv 1 \equiv 1 \equiv 1 \equiv . - 4. Perform the following key operation: $\mbox{\tt MFT}$ 4 (MATRIX) 2 (Data) 2 (MatB) $\mbox{\tt 5}$ (2×2). - \bullet This will display the Matrix
Editor for input of the elements of the 2 \times 2 matrix you specified for MatB. - 5. Input the elements of MatB: 2 \blacksquare \bigcirc 1 \blacksquare \bigcirc 1 \blacksquare 2 \blacksquare . - 6. Press to advance to the calculation screen, and perform the first calculation (MatA×MatB): 4 (MATRIX) 3 (MatA) ★ 4 (MATRIX) 4 (MatB) ■. - This will display the MatAns screen with the calculation results. **Note:** "MatAns" stands for "Matrix Answer Memory". See "Matrix Answer Memory" for more information. 7. Perform the next calculation (MatA+MatB): AC SWIFT 4 (MATRIX) 3 (MatA) + SWIFT 4 (MATRIX) 4 (MatB) =. ## **Matrix Answer Memory** Whenever the result of a calculation executed in the MATRIX Mode is a matrix, the MatAns screen will appear with the result. The result also will be assigned to a variable named "MatAns". The MatAns variable can be used in calculations as described below. - To insert the MatAns variable into a calculation, perform the following key operation: [SHET] 4 (MATRIX) 6 (MatAns). - Pressing any one of the following keys while the MatAns screen is displayed will switch automatically to the calculation screen: 日, 回, 图, 豆, 灵, 灵, 灵, 原即 涩(x²). The calculation screen will show the MatAns variable followed by the operator or function for the key you pressed. ## **Assigning and Editing Matrix Variable Data** Important: The following operations are not supported by the Matrix Editor: [H], [SIP] [H] (M-), [SIP] [G] (STO). Pol, Rec, and multi-statements also cannot be input with the Matrix Editor. To assign new data to a matrix variable: - 1. Press (MATRIX) (Dim), and then, on the menu that appears, select the matrix variable to which you want to assign data. - 2. On the next menu that appears, select dimension $(m \times n)$. Use the Matrix Editor that appears to input the elements of the matrix. ### To edit the elements of a matrix variable: - 1. Press SHET 4 (MATRIX) 2 (Data), and then, on the menu that appears. select the matrix variable you want to edit. - Use the Matrix Editor that appears to edit the elements of the matrix. Move the cursor to the cell that contains the element you want to change. input the new value, and then press =. ### To copy matrix variable (or MatAns) contents: - Use the Matrix Editor to display the matrix you want to copy. - . If you want to copy MatA, for example, perform the following key operation: SHET 4 (MATRIX) 2 (Data) 1 (MatA). - If you want to copy MatAns contents, perform the following to display the MatAns screen: AC SHFT 4 (MATRIX) 6 (MatAns) = . - 2. Press SHFT RCL (STO), and then perform one of the following key operations to specify the copy destination: (-) (MatA), [---] (MatB), or [hyp] (MatC). - This will display the Matrix Editor with the contents of the copy destination ### Matrix Calculation Examples The following examples use MatA = $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and MatB = $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ from $\cancel{\mathcal{L}}_1$, and MatC = $\begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ from $\cancel{\mathcal{L}}_2$. You can input a matrix variable into a key operation by pressing SHFT 4 (MATRIX) and then pressing one of the following number keys: 3 (MatA), 4 (MatB), 5 (MatC). 4 Obtain the determinant of MatA (det(MatA)). AC SHFT 4 (MATRIX) 7 (det) MatA) 5 Obtain the transposition of MatC (Trn(MatC)). AC SHFT 4 (MATRIX) 8 (Trn) MatC) 6 Obtain the inverse matrix of MatA (MatA⁻¹). **Note:** You cannot use x^n for this input. Use the x^n key to input ACMatA[x] = 7 Obtain the absolute value of each element of MatB (Abs(MatB)). AC SHIFT Typ (Abs) MatB) $\underline{\mathscr{D}8}$ Determine the square and cube of MatA (MatA², MatA³). **Note:** You cannot use \mathbb{Z}^1 for this input. Use \mathbb{Z}^2 to specify squaring, and $\mathbb{S}[\mathbb{R}^n]$ (\mathbb{Z}^3) to specify cubing. ACIMATA # Creating a Number Table from a Function (TABLE) TABLE generates a number table for x and f(x) using an input f(x) function. Perform the following steps to generate a number table. - 1. Press MODE 7 (TABLE) to enter the TABLE Mode. - Input a function in the format f(x), using the X variable. - Be sure to input the X variable (IIM () (X)) when generating a number table. Any variable other than X is handled as a constant. - The following cannot be used in the function: Pol, Rec, ∫, d/dx, Σ. - 3. In response to the prompts that appear, input the values you want to use, pressing $\;\; \blacksquare \;\;$ after each one. | For this prompt: | Input this: | | |------------------|---|--| | Start? | Input the lower limit of X (Default = 1). | | | End? | Input the upper limit of X (Default = 5). Note: Make sure that the End value is always greater than the Start value. | | | Step? | Input the increment step (Default = 1). Note: The Step specifies by how much the Start value should be sequentially incremented as the number table is generated. If you specify Start = 1 and Step = 1, X sequentially will be assigned the values 1, 2, 3, 4, and so on to generate the number table until the End value is reached. | | - Inputting the Step value and pressing generates and displays the number table in accordance with the parameters you specified. - Pressing while the number table screen is displayed will return to the function input screen in step 2. Note: • You can use the number table screen for viewing values only. Table contents cannot be edited. • The number table generation operation causes the contents of variable X to be changed. Important: The function you input for number table generation is deleted whenever you display the setup menu in the TABLE Mode and switch between Natural Display and Linear Display. ## **Vector Calculations (VECTOR)** Use the VECTOR Mode to perform 2-dimensional and 3-dimensional vector calculations. To perform a vector calculation, you first assign data to special vector variables (VctA, VctB, VctC), and then use the variables in the calculation as shown in the example below. To assign (1, 2) to VctA and (3, 4) to VctB, and then perform the following calculation: (1, 2) + (3, 4) - 1. Press WODE 8 (VECTOR) to enter the VECTOR Mode. - 2. Press 1 (VctA) 2 (2). - This will display the Vector Editor for input of the 2-dimensional vector for VctA. - Input the elements of VctA: 1 = 2 = . - 4. Perform the following key operation: SHFT 5 (VECTOR) 2 (Data) 2 (VctB) 2 (2). - This will display the Vector Editor for input of the 2-dimensional vector for VctB. - Input the elements of VctB: 3 = 4 =. - 6. Press 配 to advance to the calculation screen, and perform the calculation (VctA + VctB): 图即 ⑤ (VECTOR)③ (VctA)中 图即 ⑥ (VECTOR) ④ (VctA)中 图即 ⑥ (VECTOR) ⑥ (VctA)中 图即 ⑥ (VECTOR) - This will display the VctAns screen with the calculation results. **Note:** "VctAns" stands for "Vector Answer Memory". See "Vector Answer Memory" for more information. ### **Vector Answer Memory** Whenever the result of a calculation executed in the VECTOR Mode is a vector, the VctAns screen will appear with the result. The result also will be assigned to a variable named "VctAns". The VctAns variable can be used in calculations as described below. - To insert the VctAns variable into a calculation, perform the following key operation: MFT 5 (VECTOR) 6 (VctAns). - Pressing any one of the following keys while the VctAns screen is displayed will switch automatically to the calculation screen: ⊕, ⊡, ☒, ⊕. The calculation screen will show the VctAns variable followed by the operator for the key you pressed. ## Assigning and Editing Vector Variable Data #### To assign new data to a vector variable: - 1. Press SMFT 5 (VECTOR) 1 (Dim), and then, on the menu that appears, select the vector variable to which you want to assign data. - On the next menu that appears, select dimension (m). - 3. Use the Vector Editor that appears to input the elements of the vector. #### To edit the elements of a vector variable: - Press (VECTOR) (2) (Data), and then, on the menu that appears, select the vector variable you want to edit. - 2. Use the Vector Editor that appears to edit the elements of the vector. - Move the cursor to the cell that contains the element you want to change, input the new value, and then press #### To copy vector variable (or VctAns) contents: - 1. Use the Vector Editor to display the vector you want to copy. - If you want to copy VctA, for example, perform the following key operation: If So (VECTOR) (2) (Data) (1) (VctA). - If you want to copy VctAns contents, perform the following to display the VctAns screen: ♠C Ⅷ ⑤ (VECTOR) ⑥ (VctAns) ☒ . - 2. Press IRT (STO), and then perform one of the following key operations to specify the copy destination: ((VctA), ((VctB), or (WctC)). - This will display the Vector Editor with the contents of the copy destination. ## **Vector Calculation Examples** The following examples use VctA = (1, 2) and VctB = (3, 4) from 2, and VctC = (2, -1, 2) from 2. You can input a vector variable into a key operation by pressing 3 (VctCO) and then pressing one of the following number keys: (3) (VctA), (4) (VctB), (5) (VctC). ## Scientific Constants Your calculator comes with 40 built-in scientific constants that can be used in any mode besides BASE-N. Each scientific constant is displayed as a unique symbol (such as π), which can be used inside of calculations. To input a scientific constant into a calculation, press [SHFT] [7] (CONST) and then input the two-digit number that corresponds to the constant you want. $\slash\hspace{-0.4cm}$ To input the scientific constant C_0 (speed of light in a vacuum), and display its value CONSTANT Number
01~40? (...) 2 8 (Co) = 299792458 To calculate $C_0 = \frac{1}{\sqrt{E_0 U_0}}$ MATH AC \blacksquare 1 \bigcirc (SHIT 7 (CONST) 3 2 (ϵ 0) SHIT 7 (CONST) 3 3 (μ 0) \equiv The following shows the two-digit numbers for each of the scientific constants. | 01: (mp) proton mass | 02: (mn) neutron mass | | |--|---|--| | 03: (me) electron mass | 04: (mμ) muon mass | | | 05: (a ₀) Bohr radius | 06: (h) Planck constant | | | 07: (μN) nuclear magneton | 08: (μB) Bohr magneton | | | 09: (ჩ) Planck constant, rationalized | 10: (α) fine-structure constant | | | 11: (re) classical electron radius | 12: (λc) Compton wavelength | | | 13: (γp) proton gyromagnetic ratio | 14: (λcp) proton Compton wavelength | | | 15: (λcn) neutron Compton wavelength | 16: (R∞) Rydberg constant | | | 17: (u) atomic mass constant | 18: (μp) proton magnetic moment | | | 19: (μe) electron magnetic moment | 20: (µn) neutron magnetic moment | | | 21: $(\mu\mu)$ muon magnetic moment | 22: (F) Faraday constant | | | 23: (e) elementary charge | 24: (NA) Avogadro constant | | | 25: (k) Boltzmann constant | 26: (Vm) molar volume of ideal gas | | | 27: (R) molar gas constant | 28: (C ₀) speed of light in vacuum | | | 29: (C ₁) first radiation constant | 30: (C ₂) second radiation constant | | | 31: (σ) Stefan-Boltzmann constant | 32: (ε ₀) electric constant | | | 33: (µ₀) magnetic constant | 34: (φ₀) magnetic flux quantum | |--|---| | 35: (g) standard acceleration of gravity | 36: (G ₀) conductance quantum | | 37: (Z ₀) characteristic impedance of vacuum | 38: (t) Celsius temperature | | 39: (G) Newtonian constant of gravitation | 40: (atm) standard atmosphere | The values are based on CODATA recommended values (March 2007). ## **Metric Conversion** The calculator's built-in metric conversion commands make it simple to convert values from one unit to another. You can use the metric conversion commands in any calculation mode except for BASE-N and TABLE. | conmands. | | | | |------------------|------------------|------------------|------------------| | 01: in ▶ cm | 02: cm ► in | 03: ft ► m | 04: m ► ft | | 05: yd ► m | 06: m ▶ yd | 07: mile ► km | 08: km ▶ mile | | 09: n mile ► m | 10: m ▶n mile | 11: acre ► m² | 12: m² ► acre | | 13: gal (US) ▶ ℓ | 14: ℓ ► gal (US) | 15: gal (UK) ▶ ℓ | 16: ℓ ► gal (UK) | | 17: pc ► km | 18: km ▶ pc | 19: km/h ► m/s | 20: m/s ► km/h | | 21: oz ▶ g | 22: g ▶ oz | 23: lb ► kg | 24: kg ► lb | | 25: atm ▶ Pa | 26: Pa ► atm | 27: mmHg ► Pa | 28: Pa ▶ mmHg | |-----------------|-----------------|-------------------|-------------------| | 29: hp ► kW | 30: kW ► hp | 31: kgf/cm² ▶ Pa | 32: Pa ▶ kgf/cm² | | 33: kgf • m ► J | 34: J ▶ kgf • m | 35: lbf/in² ▶ kPa | 36: kPa ► lbf/in² | | 37: °F ▶ °C | 38: °C ▶ °F | 39: J ▶ cal | 40: cal ► J | Conversion formula data is based on the "NIST Special Publication 811 (1995)". Note: The J ► cal command performs conversion for values at a temperature of 15°C. # Calculation Ranges, Number of Digits, and Precision The calculation range, number of digits used for internal calculation, and calculation precision depend on the type of calculation you are performing. ## Calculation Range and Precision | Calculation Hange and Frecision | | | | |---|---|--|--| | Calculation Range | $\pm 1 \times 10^{-99}$ to $\pm 9.999999999 \times 10^{99}$ or 0 | | | | Number of Digits for Internal Calculation | 15 digits | | | | Precision | In general, ± 1 at the 10th digit for a single calculation. Precision for exponential display is ± 1 at the least significant digit. Errors are cumulative in the case of consecutive calculations. | | | ## **Function Calculation Input Ranges and Precision** | Functions | Input Range | | | |----------------------|-----------------------------|--|--| | sinx | DEG | $0 \le x < 9 \times 10^9$ | | | | RAD | 0 ≤ x < 157079632.7 | | | | GRA | $0 \le x < 1 \times 10^{10}$ | | | cosx | DEG | $0 \le x < 9 \times 10^9$ | | | | RAD | 0 ≤ x < 157079632.7 | | | | GRA | $0 \le x < 1 \times 10^{10}$ | | | tanx | DEG | Same as $\sin x$, except when $ x = (2n-1) \times 90$. | | | | RAD | Same as $\sin x$, except when $ x = (2n-1) \times \pi/2$. | | | | GRA | Same as $\sin x$, except when $ x = (2n-1) \times 100$. | | | sin⁻¹x | 0 - 1 | 0 - 14 - 4 | | | COS ⁻¹ X | $0 \le x \le 1$ | | | | tan⁻¹x | 0 ≦ <i>x</i> | ≤ 9.999999999 × 10 ⁹⁹ | | | sinhx | $0 \le x \le 230.2585092$ | | | | coshx | | | | | sinh ⁻¹ x | 0 ≤ <i>x</i> | ≤ 4.999999999 × 10 ⁹⁹ | | | cosh ⁻¹ x | 1 ≦ <i>x</i> | $\leq 4.999999999 \times 10^{99}$ | | | tanhx | 0 ≦ <i>x</i> | ≦ 9.999999999 × 10 ⁹⁹ | | | tanh⁻¹x | 0 ≤ <i>x</i> | ≦ 9.999999999 × 10 ⁻¹ | | | logx/lnx | $0 < x \le 9.999999999 \times 10^{99}$ | |--------------------------------|---| | 10 ^x | $-9.999999999 \times 10^{99} \le x \le 99.999999999$ | | e ^x | $-9.999999999 \times 10^{99} \le x \le 230.2585092$ | | \sqrt{x} | $0 \le x < 1 \times 10^{100}$ | | χ^2 | $ x < 1 \times 10^{50}$ | | X-1 | $ x < 1 \times 10^{100}$; $x \neq 0$ | | 3√X | $ x < 1 \times 10^{100}$ | | x! | $0 \le x \le 69$ (x is an integer) | | nPr | $0 \le n < 1 \times 10^{10}, 0 \le r \le n \ (n, r \text{ are integers})$
$1 \le \{n!/(n-r)!\} < 1 \times 10^{100}$ | | nCr | $0 \le n < 1 \times 10^{10}, 0 \le r \le n \ (n, r \ \text{are integers})$
$1 \le n!/r! < 1 \times 10^{100} \ \text{or} \ 1 \le n!/(n-r)! < 1 \times 10^{100}$ | | Pol(x, y) | $ x , y \le 9.999999999 \times 10^{99}$
$\sqrt{x^2 + y^2} \le 9.999999999 \times 10^{99}$ | | $\operatorname{Rec}(r, heta)$ | $0 \le r \le 9.999999999 \times 10^{99}$ θ : Same as $\sin x$ | | 01 11 | $[a],b,c<1\times10^{100}$; $0\le b,c$ The display seconds value is subject to an error of ±1 at the second decimal place. | | O5 19 | x < 1 × 10 ¹⁰⁰ Decimal ↔ Sexagesimal Conversions 0°0'0" ≤ x ≤ 9999999°59'59" | | χ^{y} | $x > 0$: $-1 \times 10^{100} < y \log x < 100$
x = 0: $y > 0x < 0: y = n, \frac{m}{2n+1} (m, n are integers)However: -1 \times 10^{100} < y \log x < 100$ | | ∜y | $\begin{array}{l} y>0; x \neq 0, -1 \times 10^{100} < 1/x \ \text{log}y < 100 \\ y=0; x>0 \\ y<0; x=2n+1, \frac{2n+1}{m} \ (m \neq 0; m, n \ \text{are integers}) \\ \text{However:} -1 \times 10^{100} < 1/x \ \text{log} \ y < 100 \end{array}$ | | $a^b/_c$ | Total of integer, numerator, and denominator must be 10 digits or less (including division marks). | | RanInt# (a, b) | $a < b$; $ a $, $ b < 1 \times 10^{10}$; $b - a < 1 \times 10^{10}$ | - Precision is basically the same as that described under "Calculation Range and Precision", above. - x^y, ^x√ȳ, ³√ , x!, nPr, nCr type functions require consecutive internal calculation, which can cause accumulation of errors that occur with each calculation - Error is cumulative and tends to be large in the vicinity of a function's singular point and inflection point. - The range for calculation results that can be displayed in π form when using Natural Display is $1x1 < 10^s$. Note, however, that internal calculation error can make it impossible to display some calculation results in π form. It also can cause calculation results that should be in decimal form to appear in π form #### **Errors** The calculator will display an error message whenever an error occurs for any reason during a calculation. There are two ways to exit an error message display: Pressing or to clear the message and calculation. ## Displaying the Location of an Error While an error message is displayed, press or to return to the calculation screen. The cursor will be positioned at the location where the error occurred, ready for input. Make the necessary corrections to the calculation and execute it again. ### Clearing the Error Message While an error message is displayed, press c to return to the calculation screen. Note that this also clears the calculation that contained the error. ## **Error Messages** #### Math ERROR Cause: • The intermediate or final result of the calculation you are performing exceeds the allowable calculation range. • Your input exceeds the allowable input range (particularly when using functions). • The calculation you are performing contains an illegal mathematical operation (such as division by zero). Action: • Check the input values, reduce the number of digits, and try again. • When using independent memory or a variable as the argument of a function, make sure that the memory or variable value is within the allowable range for the function. #### Stack ERROR Cause: • The calculation you are performing has caused the capacity of the numeric stack or the command stack to be exceeded. • The calculation you are performing has caused the capacity of the matrix or vector stack to be exceeded. **Action:** • Simplify the calculation expression so it does not exceed the capacity of the stack. • Try splitting the calculation into two or more parts. #### Syntax ERROR Cause: There is a problem with the format of the calculation you are performing. Action: Make necessary corrections. #### Argument ERROR Cause: There is a problem with the argument of the calculation you are Action: Make necessary corrections. #### Dimension ERROR (MATRIX and VECTOR Modes only) Cause: • The matrix or vector you are trying to use in a calculation was input without
specifying its dimension. • You are trying to perform a calculation with matrices or vectors whose dimensions do not allow that type of calculation. Action: • Specify the dimension of the matrix or vector and then perform Action: • Specify the dimension of the matrix or vector and then perform the calculation again. • Check the dimensions specified for the matrices or vectors to see if they are compatible with the calculation. #### Variable ERROR (SOLVE feature only) Cause: • You did not specify a solution variable, and there is no X variable in the equation you input. • The solution variable that you specified is not included in the equation you input. Action: • The equation you input must include an X variable when you do not specify the solution variable. • Specify a variable that is included in the equation you input as the solution variable. #### Can't Solve Error (SOLVE feature only) Cause: The calculator could not obtain a solution. Action: • Check for errors in the equation that you input. • Input a value for the solution variable that is close to the expected solution and try again. #### Insufficient MEM Error Cause: The configuration of TABLE Mode parameters caused more than 30 X-values to be generated for a table. **Action:** Narrow the table calculation range by changing the Start, End, and Step values, and try again. #### Time Out Error Cause: The current differential or integration calculation ends without the ending condition being fulfilled. **Action:** Try increasing the *tol* value. Note that this also decreases solution precision. # Before Assuming Malfunction of the Calculator... Perform the following steps whenever an error occurs during a calculation or when calculation results are not what you expected. If one step does not correct the problem, move on to the next step. Note that you should make separate copies of important data before performing these steps. - Check the calculation expression to make sure that it does not contain any errors - Make sure that you are using the correct mode for the type of calculation you are trying to perform. - 3. If the above steps do not correct your problem, press the (iii) key. This will cause the calculator to perform a routine that checks whether calculation functions are operating correctly. If the calculator discovers any abnormality, it automatically initializes the calculation mode and clears memory contents. For details about initialized settings, see "Configuring the Calculator Setup". 4. Initialize all modes and settings by performing the following operation: ■ ③ (CLR) ① (Setup) (Yes). ## Replacing the Battery A low battery is indicated by a dim display, even if contrast is adjusted, or by failure of figures to appear on the display immediately after you turn on the calculator. If this happens, replace the battery with a new one. Important: Removing the battery will cause all of the calculator's memory contents to be deleted. - 1. Press SHIFT AC (OFF) to turn off the calculator. - 2. Remove the cover as shown in the illustration and replace the battery, taking care that its plus (+) and minus (-) ends are facing correctly. - 3. Replace the cover. - 4. Initialize the calculator: [ON] SHFT [9] (CLR) [3] (All) [=] (Yes) - · Do not skip the above step!