## Understanding the Chemical Certificate of Analysis

The Certificate of Analysis (C of A) should be reviewed by the pharmacist (and be readily retrievable) before a chemical is placed in inventory. When calculating the weight required for a given formula all of the following should be accounted for:

1. Purity - expressed as the assay (\% less than 100) on the certificate of analysis
2. Salt conversions - i.e. hydrochloride, benzoate, pamoate
3. Water content - expressed on the C of A as Water or Loss on Drying (LOD)
4. Unit conversion - i.e. IU per mg

## Examples

1. Purity - if purity is less than $100 \%$ the weight added must be adjusted. For example, to weigh an API that has an assay of $97 \%$, the following calculation should be made:
$5.0 \mathrm{~g} \mathrm{x} \mathrm{100} \mathrm{\%}=5.155 \mathrm{~g}$, when weighed will provide 5.0 g of the API.
97\%
2. Salt conversions - some APIs require a salt conversion to obtain an accurate weight of the active component. Check USP and appropriate references to determine how potency is measured for a specific API. For example Epinephrine HCl , USP potency is determined by the potency of Epinephrine as the hydrochloride salt.

Example: The molecular weight of Epinephrine HCI , USP (219.67) divided by the molecular weight of Epinephrine $(183.20)=1.19907$ - a factor of 1.199 is used to account for the HCL salt.
3. Water Content - water content is expressed on the C of A as either 'water' or LOD (Loss on drying). Example: Lidocaine HCl , USP contains from 6 to $7 \%$ water. To account for this calculation: $100 \%-6 \%$ (water) $=94 \%$ active. $100 \%$ divided by $94 \%=1.0638$. Apply a factor of 1.063.
4. Unit calculations - some API potencies are expressed as units (or IU) per mg (or g). To compound a solution of Heparin 50,000 units (total) using Heparin Sodium, USP with a potency of $204.21 \mathrm{~J} / \mathrm{mg}$, divide 50,000units by 204.2 units $/ \mathrm{mg}=245 \mathrm{mg}$. Heparin Sodium, USP also has water content of $1.3 \%(98.7 \%)$ - to account: $245 \mathrm{mg} / 0.987=248 \mathrm{mg}$.

See USP Chapter <1160>- for a formula to calculate the amount of drug to be weighed: $W=a b / d e$, where $W$ is the actual weighed amount; $a$ is the prescribe weight of the active drug; $b$ is the chemical weight of the ingredient; $d$ is the fraction of dry weight when the percent of moisture is known from LOD; and $e$ is the formula weight of the active drug provided by the weighed ingredient.

