BLRI SFP IR MDA

Ares ETR UHD Riflescope

SECOND FOCAL PLANE

RETICLE MANUAL

THE ATHLON ${ }^{\oplus}$ BLRI SFP IR MOA RETICLE

BLR1 SFP IR MOA reticle is designed to maximize your performance for both Bench Rest and F-Class shooting applications. Fine line thickness of the reticle (0.018 moa) allows for pinpoint precision at extreme ranges, especially on smaller targets. An illuminated floating center dot (0.09 moa thick) provides a precise aiming point. This reticle combined with the Ares ETR UHD riflescope provides the perfect solution.

Application: Precision Mid and Long Range Target Shooting

RETICLE SUBTENSIONS

The BLR1 SFP IR MOA reticle is based on the minute of angle, a unit of angular measurement, usually shortened to moa. A "moa" is defined as "one minute of an angle". As a full circle has 360 degrees, and each degree is composed of 60 minutes (60^{\prime}). thus there are 360 (degrees) x 60 (minutes) $=21,600$ minutes in a circle. Since there are 360 degree in a circle, we can get 360 degree $/ 21600$ minutes $=0.016667$ degrees/minute. If the target is 100 yards (3600 inches) away, we can use a formula, $3600 *$ TAN(RADIANS(. 016667)), to get 1.047 inches which means 1 moa equals to 1.047 inches at 100 yards. Many people just round down the 1.047 inches to 1 inch @100 yards. If you are using metric system, formula $100000 \mathrm{~mm} *$ TAN(RADIANS(.01667)) gets you that 1 moa equals to 29.1 mm @100 meters.

The BLR1 SFP IR MOA reticle is located at the second plane which stays in between erector tube and ocular lens. The size or the appearance of a second focal plane reticle does not change when you try to zoom in or zoom out, however the relative ratio between reticle and your target changes all the time because your target appears bigger or smaller when the magnification changes.

The subtensions of a second focal plain reticle and ranging capability are only accurate at certain magnification and due to this nature, the subtensions of the reticle are only valid at 40 x for $15-60 \mathrm{x} 56$ scope.

SUBTENSIONS IN MOA

A1	A2	B1	B2	B3
0.018	0.3	0.2	0.5	0.7
B4	C1	C2	C3	D1
0.3	0.5	1	2	0.09

DISTANCE RANGING

Equations for ranging distance to a target using moa
$\frac{\text { Height of Target (Inches) } \times 100}{\text { MOA Reading on Reticle }}=$ Distance to Target (Yards)
$\frac{\text { Height of Target (CM) } \times 34.4}{\text { MOA Reading on Reticle }}=$ Distance to Target (Meters)

As the height of target and moa reading on the reticle are two key variables in this equation, you have to get an accurate value for those two as mush as possible. First all you want to put your rifle on a steady rest so you can get an accurate reading of the target height on the reticle. If needed using the smallest measurement on the reticle to get the most accurate readings. Second use your best knowledge on the height of the target, such as 72 inch high fence or 45 inch shoulder high of white tail deer, to give a value of the target height. Once you got the reading on reticle and your estimate of the target height, you can just simply use above equations to calculate the distance to your target.

EXAMPLE

Reading a 1-foot target (12 inches) at 2 moa gives 600 yards

12 inches $\times 100$
2 moa

HOLDOVER FOR COMPENSATING BULLET DROP

To be able to use the elevation holdovers effectively, you have to know the distance to your target and bullet trajectory (bullet drop in inches or moa). Since many bullet ballistic charts highlight bullet drops in inches and 1 moa equals to 1.047 (rounded down to 1 inch) at 100 yards, 2 inches at 200 yards, and 10 inches at 1000 yards, etc, we can use those to calculate the holdover position in moa on this reticle.

For example, under no wind condition, if you knew your target is at 600 yards and your ammo has a 30 inch bullet drop at that distance, you want to use 5 moa holdover point. Here is how you got the 5 moa : since 1 moa equals to 1 inch $\times 6=6$ inches at 600 yards, and then 5 moa equal to 5×6 inches $=30$ inches at 600 yards, you want to hold the 5 moa drop point to compensate the 30 inch bullet drop.

To achieve ultimate precision, it is always a better idea to develop your own D.O.P.E (Data of Previous Engagement)chart so that you can refer back to it for specific bullet drop compensation under different ambient environment and weather condition.

EXAMPLE

5 moa /30 inch holdover for a target @ 600 yards out. No wind.

HOLDOVER FOR WIND CORRECTION AND MOVING TARGET

The BLR1 SFP IR MOA reticle has 0.5 moa markings increment both vertically and horizontally from the 0.09 moa floating center dot which can help you set your holdover positions to compensate wind correction and hold the lead for a moving target.

The flying time of a bullet, the velocity and direction of the wind and the "slippery-ness" of the bullet expressed in BC (Ballistic Coefficient) determine your holdover for wind correction. Once again you have to understand the impact of those three factors on your bullet's flying path in terms of inches or moa and calculate how much holdover you have to hold, and then finding the corresponding holdover position on the reticle is a much easier task to accomplish.

EXAMPLE

3 moa wind correction for 5 mph wind from right to left @ 600 yards. Elevation turret has been dialed up to compensate bullet drop, just simply use center horizontal cross line to holdover for wind correction.

USE VISUAL CROSS POINT FOR WIND CORRECTION AND BULLET DROP

As an alternative, you can use a virtual cross point formed by hash marks on both horizontal and vertical cross lines to holdover bullet drop and wind correction.

EXAMPLE

Use 5 moa for 30 inch bullet drop for a target @ 600 yards, 3 moa wind correction for 5 mph wind from right to left.

HOLD LEAD CORRECTION FOR A MOVING TARGET

Distance to your target, moving speed of your target, bullet flying time, wind direction are the key factors that determine how much holdover you need to hold for a moving target. As a rule of thumb, you always hold the lead for the net distance of your target moved (add or subtract holdover for wind correction) during the time span your bullet traveled.

EXAMPLE

5.9 moa lead holdover for a moving target traveling at 2 mph from left to right @ 600 yards. Bullet flight time is 1 second during which the target traveled 2.94 feet. No wind.

THE ATHLON GOLD MEDAL LIFETIME WARRANTY*

Demand the most from your equipment. When things go unexpectedly or accidents happen, rest assured, Athlon Optics carry a lifetime transferable warranty. Athlon guarantees to repair or replace your product if damaged through normal use. No charge; No receipt; No Registration required.
*This warranty does not cover damages caused by deliberate damage, misuse, theft or maintenance provided by someone other than the Athlon Authorized Service Department.

SHARP, TIEHT AND PRIBED JIST RIBHTE

Toll free: 1-855-913-5678
contact@athlonoptics.com
801 N MEADOWBROOK DR, OLATHE, KS 66062

ATHLONOPTICS.COM

