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Abstract: Cocoa and cocoa products have received much attention due to their significant 
polyphenol contents. Cocoa and cocoa products, namely cocoa liquor, cocoa powder and 
chocolates (milk and dark chocolates) may present varied polyphenol contents and possess 
different levels of antioxidant potentials. For the past ten years, at least 28 human studies 
have been conducted utilizing one of these cocoa products. However, questions arise on 
which of these products would deliver the best polyphenol contents and antioxidant effects. 
Moreover, the presence of methylxanthines, peptides, and minerals could synergistically 
enhance or reduce antioxidant properties of cocoa and cocoa products. To a greater extent, 
cocoa beans from different countries of origins and the methods of preparation (primary 
and secondary) could also partially influence the antioxidant polyphenols of cocoa 
products. Hence, comprehensive studies on the aforementioned factors could provide the 
understanding of health-promoting activities of cocoa or cocoa products components. 
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Introduction  

 
The chronology of cocoa began in 2,000 B.C, the date attributed by historians to the oldest drinking 

cups and plates that have ever been discovered in Latin America at a small village in the Ulúa valley in 
Honduras, where cocoa played a central role. In 200-900 AD, cocoa was one of the main products in 
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Mayan agriculture and religion. For instance, cocoa is used as a gift to deceased dignitaries at their 
funeral ceremonies and as currency [1]. The word cacao is derived from the Olmec and the subsequent 
Mayan languages (kakaw) and the chocolate-related term cacahuatl is Nahuatl (Aztec language) 
derived from Olmec/Mayan etymology [2]. In 1737, the cocoa tree was named Theobroma cacao 
which refers to the mythical background of the tree literally means “cocoa, food of the gods” [1]. 
Dillinger et al. [2] reported that medicinal uses of cocoa had been traced from Mexican (Aztec) 
sources and approximately 150 uses of cocoa for medical treatment had been documented. Various 
parts of Theobroma cacao have been utilized, namely cocoa beans prepared as chocolate, cocoa bark, 
cocoa butter, cocoa flower, cocoa pulp and cocoa leaf. Cocoa was brought to Europe by the Spanish in 
1505. By 1653, cocoa was used in Europe as a medicine rather than as a delicious foodstuff. The use of 
chocolate was recognized as stimulating the healthy function of the spleen and other digestive 
functions. Moreover, in the 17th and 18th century, chocolate was regularly prescribed or mixed into 
medications for all sorts of ailments and diseases from colds and coughing, to promote digestion, 
fertility, reinforce mental performance and as an anti-depressant [1]. 

Studies on the health benefits of cocoa and cocoa products have been conducted over the past 
decade, with a major focus on degenerative diseases. These benefits could be due to their significant 
amounts of flavonoid monomers (catechin and epicatechin) up to tetradecamers [3, 4]. It was noted 
that all polyphenols possessed antioxidant action in vitro, but do not necessarily exert antioxidant 
potential in vivo [5]. Most of the early studies focusing on health benefits of cocoa polyphenols came 
from human clinical trials [5]. Moreover, the study on health benefits of cocoa was not limited to that 
of human intervention but had also been extensively studied in vitro and in vivo [6-10].  

The majority of the studies have examined the contributions of the flavonoids in cocoa and cocoa-
products towards health benefits, but it must be noted that cocoa and their products are also rich in 
methylxanthines, namely caffeine, theobromine and theophylline [11, 12] and studies have 
demonstrated that methylxanthines can possess both positive and negative health effects. For instance, 
caffeine intake has been reported to have negative effects on reproductive health [13]. On the other 
hand, caffeine supplementation enhanced net hepatic glucose uptake through increment of glucose-6-
phosphate production in the liver [14]. Cocoa is also rich in micronutrients [15] and micronutrients 
such as copper found in cocoa could contribute significantly towards human dietary intake [16]. As 
cocoa contains a mixture of bioactive components, it is possible to postulate that there may be direct or 
indirect synergism between these components in delivering their health properties. Cooper et al. [5] 
suggested that if the biological effects are due to cocoa flavonoids rather than the other components, 
the perfect control would be cocoa or cocoa products that contain things other than flavonoids. 

Factors affecting quality and quantity of cocoa and cocoa-based products during production and 
manufacturing are of great importance in delivering the best health effects. These factors could 
significantly reduce the polyphenol content of the selected products. Physiological factors, namely 
bioavailability and antioxidant properties, should also be considered when assessing their contribution 
in the biological system. For instance, there could be a significant correlation between interactions of 
polyphenols and proteins, but the interference of protein with polyphenols remains inconclusive, as 
some studies have demonstrated that protein could reduce the activity of polyphenols and some studies 
not [17, 18]. To date, there is a lack of studies which concurrently determine the outcomes and the 
bioavailability or antioxidant status of the studied subjects. Studies reported that antioxidant status of 
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the subjects are not improved or enhanced although there were positive health outcomes. Hence, is 
there actually a link between cocoa antioxidants and health or is it due to any other components of the 
cocoa and cocoa products? Factors such as bioavailability, types of cocoa and cocoa products used in 
the intervention study, antioxidant status, and the state of subjects being studied (normal, borderline, or 
with disease) would at least affect the measured outcomes. 
 
Polyphenols and other components in cocoa beans and cocoa-based products  
 
Polyphenols  

 
Cocoa had long been identified as a polyphenols-rich food. The main polyphenol in cocoa or known 

as cacao was first identified by Ultée and van Dorsen in 1909 [19]. The crystalline compound they 
discovered, with empirical formula C16H16O6, was called “Kakaool”. For over 20 years afterwards, 
there was disagreement between researchers in naming this phenolic compound. Further purification 
indicated that this compound was catechin, with empirical formula C15H14O6 [20]. However, this 
compound was mistakenly named l-acacatechin as one of catechins present in the cutch-producing 
acacias (Acacia catechu). A year later, Freudenberg et al. [21] reported that “Kakaool” probably 
represented l-epicatechin, which could also be found in Acacia catechu. Later, they agreed that the 
name l-acacatechin was incorrect as both catechin and epicatechin are stereoisomers. Forsyth [22] 
reported that cocoa bean contains four types of catechins, of which (-)-epicatechin constitutes about 
92%.  

Adam et al. [23] indicated that unfermented cocoa bean contains both tannin and catechin. The 
brown and purple color of the cocoa bean was attributed to the complex alteration products of catechin 
and tannin. Beside these compounds, cocoa was found to have leucoanthocyanins that are present as 
glycosides. Similarly, it was observed that cocoa beans contains two cyanidin glycosides and at least 
three leucocyanidins (procyanidin) compounds [22]. Leucocyanidins constitute about 60% of total 
polyphenols in fresh cocoa cotyledon [24]. Quesnel [25] found that cocoa bean contains simple 
dimeric leucocyanidin and epicatechin. Epicatechin and simple leucocyanidins 1, 2 and 3 (L1, L2, and 
L3) are present in cocoa beans, as identified using two-dimensional paper chromatography. In 
addition, cyanidin is also present as cyanidin-arabinoside and cyanidin-galactoside. Later in 1977, 
Jalal et al. [26] indicated that the major components of cocoa extracts (leaves, cotyledons, stem, and 
callus) are anthocyanins, leucocyanidins, (-)-epicatechin, catechin, p-coumaryl quinic acid and 
chlorogenic acid. 

The study on cocoa polyphenols became more extensive with the discovery of major low molecular 
weight polyphenols in cocoa, namely catechin, epicatechin, dimers epicatechin-(4β→8)-catechin 
(procyanidin B1), epicatechin-(4β→8)-epicatechin (procyanidin B2), and trimer [epicatechin-
(4β→8)]2-epicatechin (procyanidin C1) [27]. Previous studies showed that monomeric polyphenols, 
namely epicatechin and catechin, dimer, trimer, and tetramer were detected by reverse-phase liquid 
chromatography mass spectometry (RP LC-MS) [28]. It has been reported that flavonols (epicatechin 
and catechin) were predominant compounds in cocoa powder [29, 30]. Epicatechin was predominant in 
all chocolates, with a ratio of 1:0.1, compared to catechin [31]. The basic structure of flavanols is 
shown in Figure 1. Structures of the monomeric catechin and epicatechin enantiomers are shown in 
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Figure 2, while the dimer and trimer are given in Figure 3. The monomers are stereoisomers at position 
3 of the C-ring, but have the same configuration at position 2 [32]. Moreover, the interflavan bond at 
position 4 is always trans to the hydroxyl (OH) group at position 3. (+)-Catechin and (–)-epicatechin 
forms are commonly found in cocoa [33]. However, their respective enantiomers namely (–)-catechin 
and (+)-epicatechin are not commonly found in nature [34]. The chemical structures of flavonols and 
procyanidins are important for their antioxidant activity as they possess both free radical trapping and 
chelation of redox-active metals properties [35]. Flavonoids and procyanidins were found to prevent 
lipid oxidation through interaction between lipid forming membranes and the adsorption to the polar 
lipid headgroups [36].  

 
Figure 1. Basic structure of flavonols [34]. 

 
* indicates chiral center located at the C2 and C3-position of the C-ring. 

 
Figure 2. Structures the catechin and epicatechin enantiomers [34, 46]. 

          

 (+)-Catechin (2R, 3S)   (-)-Epicatechin (2R, 3R) 

           

(-)-Catechin (2S, 3R)    (+)-Epicatechin (2S, 3S) 
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Figure 3. Structures of procyanidin dimer and trimer in cocoa [36]. 

                           
   Dimer B2, epicatechin-(4β-8)-epicatechin                 Trimer C1, epicatechin-(4β→8)]2-epicatechin 
 

Porter et al. [37] confirmed that another three new compounds are present in fresh cocoa beans. The 
new compounds were identified as epicatechin-(2β→5,4β→6)-epicatechin, 3T-O-β-D-galacto-
pyranosyl-ent-epicatechin-(2α→7,4α→8)-epicatechin and 3T-O-L-arabinopyranosyl-ent-epicatechin-
(2α→7,4α →8)-epicatechin. Cocoa was reported to have high polyphenols content, which comprises 
12-18% of the whole beans dry weight [38]. A study reported that in raw cocoa beans, 60% of total 
phenolics were flavonol monomers (epicatechin and catechin) and procyanidin oligomers [39]. (–)-
Epicatechin content in freshly prepared beans ranged from 21.89-43.27 mg/g dry defatted samples 
[40]. Cocoa is rich in polyphenols such as (+)-catechin, (–)-epicatechin, and oligomers of these 
monomeric base units, namely procyanidins, and anthocyanidins [41]. Kelm et al. [3] later indicated 
that unfermented cocoa beans contain monomers up to tetradecamers. 

Recently, it has been showed that chocolate is one of the most polyphenol-rich foods along with tea 
and wine [42, 43]. Results indicated that dark chocolate exhibited the highest polyphenol content, with 
610 mg total catechins/kg of fresh edible weight [43]. With advancements in technology, high 
performance liquid chromatography (HPLC) had been utilized in the determination of polyphenol 
compounds in cocoa. Kim and Keeney [44] developed a sensitive method for determination of (-)-
epicatechin in cocoa beans which was detected at 280 nm and quantified by using external standards. 
Chocolates is also rich in polyphenol substances, such as (–)-epicatechin (EC), (+)-catechin, quercetin 
(including its glucoside), clovamide, deoxyclovamide, trans-resveratrol and its glucoside (trans-piceid) 
and procyanidin [41, 45]. 

Over the past decade, at least 28 studies have been reported on the health benefits of cocoa 
flavonoids [5]. Most studies showed positive relationships between cocoa and chocolate flavonoids on 
cardioprotective effects. These findings were attributed to antioxidant flavonoids ranging from 
monomers to oligomers in cocoa and chocolates as discussed before. However, most of the outcomes 
were based on the short-term effects (between 4 days to 6 weeks) [5]. Is there a link between the 
antioxidant flavonoids of cocoa and cocoa products on health effects based on short-term studies? 
Hence, long-term feeding trials of cocoa and cocoa products on health benefits are warranted. As 
reported, bioavailability of ingested flavonoids present in cocoa or cocoa-based products is of great 
importance as it may in turn reflect antioxidant status of the studied subjects. Thus, it is important to 
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consider both bioavailability and antioxidant status in determining the relationship between cocoa 
flavonoids and health benefits. 

The measurement of plasma antioxidant concentration and oxidative stress levels are examples of 
determining antioxidant status. Effects of monomers up to decamers derived from cocoa was dose-
dependent and prevented erytrocyte hemolysis in vitro and enhanced plasma antioxidant capacity [47]. 
Adamson et al. [48] indicated that polyphenol content positively correlated with antioxidant properties 
as measured by oxygen radical absorbance capacity (ORAC). All polyphenols possess antioxidant 
properties in vitro but are not likely to exert the same properties in vivo and in human. An in vivo study 
indicated that epicatechin from cocoa could enhance the antioxidative activity of plasma [49]. 
Physiologically, epicatechin exhibited dose-dependence in plasma after dark chocolate consumption as 
low as 1 nM [50]. The presence of epicatechin (12-fold from baseline) leads to significant increase in 
plasma total antioxidant capacity and decrease in plasma thiobarbituric acid reactive substances. 
Similarly, Wang et al. [51] demonstrated that dark chocolate dose-dependently increased plasma 
antioxidants and decrease 8-isoprostane.  

Cocoa supplementation exerts promising health properties due to its antioxidative properties, 
however, there are also studies which failed to show these effects. Supplementation of cocoa for four 
weeks significantly improves platelet function among healthy subjects [52]. However, there was no 
correlation between cocoa intake and plasma antioxidant status. Similarly, cocoa intake decreased 
LDL oxidation without changes in antioxidant potentials and oxidative stress level in plasma [53]. 
Dark chocolate supplementation for three weeks in healthy subjects significantly increased high-
density lipoprotein cholesterol (HDL-c) compared to their unsupplemented counterparts [54]. 
However, there were no changes in total antioxidant capacity and oxidative stress biomarker (8-
isoprostane). Similarly, Wan et al. [55] demonstrated that cocoa powder and dark chocolate 
supplementation improved HDL levels by 4% compared to control diet, but there were no changes in 
oxidative stress biomarkers. Milk chocolate bar consumption increased HDL levels compared to high-
carbohydrate snacks among young men [56]. These studies clearly indicated that cocoa administration 
did not exert their antioxidative properties in plasma of healthy subjects, although there were 
significant health outcomes. This could be due to the status of subjects recruited in the study. Cooper 
et al. [5] reported that healthy subjects may already have optimum dietary status and supplementation 
will not produce meaningful outcomes.  

Numerous studies have been reported on the health benefits of cocoa and their products on 
cardiovascular diseases [5]. The measured outcomes were mainly focused on plasma antioxidant 
activity [51], low density lipoprotein (LDL) oxidation [57], blood pressure [58], arterial flow mediated 
dilation (FMD) [59] and platelet aggregation [52]. Most of the studied outcomes of cocoa polyphenols 
on cardiovascular health were on the antioxidant status, endothelial function, inflammatory production, 
nitric oxide bioactivity and platelet function [60]. These factors were associated with coronary diseases 
[61]. Most of the studies showed cocoa enhanced flow mediated dilation. Flow mediated dilation 
(FMD) of the brachial artery is a tool for measuring endothelium-dependent dilation [62]. The results 
indicated that a single dose of cocoa drink increased nitric oxide in human plasma and improved 
endothelial dysfunction. Moreover, Balzer et al. [63] reported that cocoa ingestion improved basal 
FMD by 30% without changes in endothelial function, blood pressure, heart rate and glycaemic 
control among diabetics. Procyanidins extracted from cocoa exhibited endothelium-dependent 
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relaxation (EDR) through activation of nitric oxide synthase activity in rabbit aortic rings in vitro [64]. 
The results were reported to be due to the tetramers and higher polymers of epicatechin, and 
monomers, dimers, and trimers were not capable of contributing to EDR. In vivo studies indicated that 
dark chocolate, cocoa powder and cocoa liquor suppressed the development of atherosclerotic lesions 
and inhibited atherosclerosis [9, 10]. High-flavonoid content dark chocolate (containing 259 mg 
polyphenols) significantly improved FMD in healthy subjects compared to low-flavonoid chocolate 
(containing trace amount of polyphenols) [65]. Although the supplementation of high-flavonoids dark 
chocolate increased plasma epicatechin, there were no significant changes in LDL oxidation, total 
antioxidant capacity, 8-isoprostane, blood pressure, body weight and body mass index. In contrast, 
there was a study which showed negative association between flavonoids-rich chocolate consumption 
and cardiovascular diseases among coronary artery disease (CAD) subjects [66]. There were no 
significant changes observed in lipid profiles, soluble cellular adhesion molecules, FMD, systemic 
arterial compliance and forearm blood flow. The negative outcomes could be due to several factors 
which include the age of subjects, and their CAD burden. 

A growing number of studies were done on cocoa polyphenols and their protective effect towards 
LDL oxidation as an early indicator for the development of cardiovascular diseases [53, 67, 68]. 
Mathur et al. [53] demonstrated reduced LDL oxidation after cocoa supplementation for 6 weeks 
compared to unsupplemented subjects. Baba et al. [67] indicated that after 4 weeks of low, medium, 
and high dosages of cocoa powder supplementation, subjects showed decreased plasma LDL 
cholesterol, oxidized LDL and apo-B concentration compared to baseline. Long-term supplementation 
of cocoa powder (12-weeks) to normo and mildly hypercholesterolemic human subjects had decreased 
LDL oxidation and increased plasma HDL cholesterol compared to the control group [68]. In addition, 
cocoa powder supplementation in healthy males significantly prevented LDL oxidation [57].  

Low doses of dark chocolate (containing 30 mg polyphenols) supplementation to prehypertension 
subjects for 18 weeks significantly reduced systolic and diastolic blood pressure compared to 
polyphenols-free white chocolate [58]. Dark chocolate consumption (containing 180 mg polyphenols) 
resulted in reduction of total and LDL cholesterol among elevated serum cholesterol subjects [69]. 
There was also significant reduction in systolic blood pressure. 

 Cocoa liquor showed dose-dependently prevents the development of hyperglycemia in diabetic 
obese mice [70]. To a greater extend, our previous studies indicated that 4 weeks of cocoa powder 
extract supplementation to diabetic animal model showed hypolipidemic and hypoglycaemic 
properties [71, 72]. In human subjects with hypertension, dark chocolate administration ameliorated 
insulin [73, 74]. Brand-Miller et al. [75] reported that incorporation of cocoa powder as flavour in six 
different foods (chocolate bars, cakes, breakfast cereals, ice creams, flavored milks and puddings) 
increased postprandial insulin secretion compared to strawberry flavour. However, no changes were 
observed in the glycaemic index. They suggested that specific insulinogenic amino acids may explain 
their findings. Unlike cardiovascular diseases, there is still limited human study on the effects of cocoa 
polyphenols and diabetes in human clinical trials. More work need to be done in exploring the effects 
of cocoa polyphenols on diabetes risk. 

Cocoa powder exerted anti cancer properties in in vivo studies. Amin et al. [76] indicated that cocoa 
liquor extract lower the activity of tumor marker enzymes during hepatocarcinogenesis. Cocoa powder 
supplementation significantly reduces the incidence of prostate carcinogenesis compared to positive 
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controls [77]. The supplementation also increased the life span of the tumor-bearing rats. Bisson et al. 
[78] reported that cocoa powder dose-dependently decreased prostate hyperplasia through reducing 
dihydrotestosterone level and prostate size ratio. To the greater extend, long-term supplementation of 
cocoa powder improve cognitive performance in aged rats compared to unsupplemented rats [79]. 
Daily cocoa extract administration prevented the overproduction of free radicals after heat exposure 
and thus protect from cognitive impairments [80]. 
 
Methylxanthines 

 
Apart from polyphenols, cocoa is also rich in methylxanthines, namely caffeine, theobromine, and 

theophylline [11, 12]. These compounds, found in dark chocolates, are responsible for chocolate 
cravings [81]. Caffeine was found in cocoa beans in 1909 [19]. It was initially found as a mixture of 
caffeine and catechin known as “caffeine-kakaool”. Forsyth indicated that caffeine can form a loose 
complex with epicatechin [82]. Later, Forsyth and Quesnel [24] indicated that only theobromine was 
identified in cocoa beans. Theobromine is the major methylxanthine present in cocoa, constituting 
about 4% on a fat free basis, while the caffeine content is about 0.2% [83]. Pura Naik [84] has 
confirmed that theobromine is the dominant purine alkaloid present in cocoa beans. In contrast, 
theophylline was present in low amounts [85]. The structures of methylxanthines present in cocoa are 
shown in Figure 4. Theobromine is also a major alkaloid in young pericarp and is present almost 
exclusively in the cotyledons of the beans. Caffeine and 3-methylxanthine are the major alkaloids in 
mature pericarp.  

 
Figure 4. Methyxanthines present in cocoa [86]. 

                                                 
   Caffeine                                 Theophylline 

 
Theobromine 

 
Dark chocolate is high in theobromine and caffeine due to the addition of high amount of cocoa 

solids than that of milk and white chocolates. The amount of theobromine is higher, compared to 
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caffeine in cocoa and cocoa products [11, 12, 58]. Theobromine is a psychoactive compound without 
diuretic effects. Caffeine levels are relatively low in cocoa, compared to those found in coffee and tea 
[15]. Although most of the studies indicated that the health benefits of cocoa or cocoa products were 
attributable to polyphenols [5], it should be noted that cocoa and cocoa products are not only rich in 
polyphenols, but are also rich in methylxanthines (caffeine, theobromine, and theophylline). Most of 
the studies underline the effects of polyphenols on the studied subjects, but the question of whether the 
presence of methylxanthines enhances or reduces the health benefits of the cocoa flavonoids remains 
unanswered, as the evidence in favor or against is often contradictory. Furthermore, the possible 
synergistic interactions between flavonoids and methylxanthines are also unclear and need further 
study. Kelly [87] has suggested that the contribution of theobromine in dark chocolate towards health 
benefits should be considered. For instance, methylxanthines particularly caffeine, could exert pro-
oxidant properties, and caffeine, theobromine, and theophylline exerted antioxidant activity and 
protective ability under physiological conditions [88], but Vinson et al. [89] have reported that 
theobromine and caffeine were neither prooxidant nor antioxidant. To date, the studies on the effect of 
caffeine on glucose metabolism have also demonstrated conflicting outcomes.  

Administration of 5 mg caffeine/kg body weight reduced insulin-stimulated glucose uptake in 
T2DM and sedentary human subjects as measured by hyperinsulinemic-euglycemic clamp procedure 
[12, 90]. Ingestion of 5 mg/kg body weight caffeinated coffee resulted in increased area under the 
curve for glucose, insulin, and C-peptide compared to decaffeinated coffee among healthy men [91]. In 
diabetics, caffeine supplementation had adverse effects on glucose metabolism and impaired 
postprandial glucose response [92]. Graham et al. [93] showed that the same dose of caffeine could 
also increase serum insulin and C peptide compared to placebo. Mechanistically, methylxanthines 
inhibited phosphodiesterase and hence increase the intracellular concentration of cyclic adenosine 
monophosphate. It was known that intracellular concentration of cyclic adenosine monophosphate is 
involved in the regulation of both insulin secretion from pancreatic cells and liver glucose output. The 
presence of methylxanthines may thus positively affect glucose metabolism [94].  

Caffeine supplementation enhanced net hepatic glucose uptake through increment of glucose-6-
phosphate production in the liver during glucose load [14]. Aminophylline (a type of caffeine 
metabolite) has been shown to stimulate glucose and arginine-stimulated insulin release [95, 96]. 
Previously, it had been reported that adenosine receptor stimulates glycogenolysis in hepatocytes 
through binding to A2 receptor [97, 98] and inhibit insulin secretion through binding to A1 receptor 
[99, 100]. Arias et al. [101] indicated that aminophylline supplementation decreased glucose 
production with concomitant increased in insulin secretion, indicating aminophylline inhibits 
endogenous glucose production in type 2 diabetes.  

 Eteng and Etarh [102] demonstrated that single doses of theobromine (700 mg/kg body weight) 
significantly reduced lipid profiles in hyperlipidemic rats. However, no effect on lipid profiles was 
observed after administration of cocoa extract, compared to pure theobromine. Eteng et al. [103] 
reported that supplementations of 3% and 15% cocoa powder that contained 56 to 265 mg 
theobromine to the rats significantly reduced body weight and also decreased lipid profiles. These 
results indicated that cocoa possessed hypocholesterolemic properties, in contrast to the first study. 
This is probably due to the dosage used as the theobromine content in the first study was almost three 
times higher than in the later one. It was noted that theobromine was responsible for the activation of 
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hormone-sensitive lipase, which hydrolyzed triacylglycerols and release free fatty acids and glycerols 
from adipose tissue into plasma [104]. 

A study has demonstrated the positive effects of theobromine on cancer. Theobromine was reported 
to potentially inhibit angiogenesis induced by ovarian cancer cells through inhibition of vascular 
endothelial growth factor production [105]. At a therapeutic dose of 500 mg/kg it has been used in the 
treatment of cardiac oedema and angina pectoralis, and its analogues pentoxyfylline, suramin-
theobromine and lisophylline are currently being exploited for cancer chemotherapy [106-108]. In 
contrast, theobromine intakes among men have been associated with increased risk of prostate cancer 
[109].  

Previously, theobromine intakes had been reported to have negative effects on reproductive health. 
Theobromine (250 mg theobromine/kg body weight) can lead to vacuolation within the Sertoli cells, 
altered spermatid shape, and failure in the release of late spermatids in male rats [13]. Moreover, high-
dose cocoa extract containing theobromine could alter testis structure to a greater extent to that of pure 
theobromine. The supplementation caused changes in weight patterns and in the morphology of the 
thymus in both sexes of rabbits. Theobromine supplementation causes mortality in rabbits. Soffietti 
[110] indicated that 1 and 1.5% of theobromine supplementation causes mortality in mature and 
immature rabbits and the effects were reported to be both dose- and time-dependent. Strachan and 
Bennett [111] did indicate sudden death of laboratory animals after theobromine administration, due to 
cardiac failure. In pregnant women, caffeine from coffee or cocoa beverages is freely absorbed through 
the placenta and eventually leads to fetal growth retardation [112, 113].  
 
Peptides 

 
Besides polyphenols and methylxanthines, cocoa is also rich in proteins. Cocoa peptides are 

generally responsible for the flavour precursor formation [114-116]. Cocoa beans contain four types of 
proteins, namely albumins, globulins, prolamin, and glutelin. Of these, albumin constitutes the major 
protein fraction [117, 118]. Albumin and globulin fractions accounted for 52% and 43% of total bean 
proteins, respectively [119]. Albumin has a molecular weight of 19 kDa, while the globulins have 
molecular weights of 47, 31, and 14.5 kDa. Cocoa bean is the first to have vicilin-like globulin with 
sedimentation coefficient of 7-8S and a molecular weight of 150 kDa. The storage protein comprises 
two vicilin fractions with molecular weights of 47.1 and 39.2 kDa, and the albumin fraction has a 
molecular weight of 21.1 kDa [120]. Buyukpamukcu et al. [121] reported two new compounds were 
formed from vicilin protein during cocoa fermentation. The peptides are nonapeptide and hexapeptides 
(a product of nonapeptide degradation).  

To the best of our knowledge, there are few studies on the contribution of cocoa peptides towards 
health. Cocoa is also rich in peptides and amino acids as described in the previous section. It has been 
found that peptides and amino acids are responsible for the taste and aroma precursors of chocolate. 
Bioactive peptides were reported to possess antihypertensives, antithrombotic, hypocholesterolemic 
and hypotriglyceridemic, and antiobesity effects [122]. Marcuse [123] reported that the antioxidant 
activity was attributable to histidine, tyrosine, methionine and cysteine. Of these, histidine possessed 
strong radical scavenging activity due to the decomposition of its imidazole ring [124]. In addition, 
hydrophobicity of peptides also appears to be an important factor for their antioxidant activity, due to 
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increased interaction with hydrophobic targets (e.g. fatty acids) [125]. However, the health effects of 
peptides in humans and the optimal plasma levels remain to be elucidated [122].  
 
Minerals 

 
As discussed, the health properties of cocoa and cocoa products are not solely dependent on their 

polyphenol contents, but also contributed to by other components such as methylxanthines (caffeine 
and theobromine), peptides, and minerals. Previous studies seem to underestimate the contribution of 
minerals and peptides in cocoa and cocoa products towards health benefits. Steinberg et al. [126] 
showed that minerals are one of the important components in cocoa and cocoa products. Cocoa and 
cocoa products contained relatively higher amount of magnesium compared to black tea, red wine, and 
apples [15]. Based on Dietary Reference Intakes (DRI) of magnesium for men and women with an age 
range between 30-71 years old, cocoa powder provides 53% of DRI as per serving size (44 g) followed 
by dark chocolate (12%), sweet chocolate (12%), milk chocolate (7%), cocoa drink (1%), and white 
chocolate (1%). In human subjects with hypertension, dark chocolate administration ameliorated 
insulin [73, 74]. The dose of dark chocolate (100 g) given contains 115 mg magnesium, which 
approximately delivers 36% of DRI per day. Hence, questions arise as to whether there is any direct 
contribution of magnesium besides polyphenols to health benefits?  

Magnesium is an important mineral in the regulation of blood pressure. It was observed that 
magnesium intake from foods inversely related to blood pressure compared to intake from supplements 
[127]. The highest quantile (median intake = 457 mg/day) of magnesium intake in Health 
Professionals Follow-up Study was associated with reduced risk of developing cardiovascular disease 
compared to lowest quantile (median = 269 mg/day) [128]. The amount of magnesium (440 mg) in this 
study is almost equivalent to magnesium content in 88 g unsweetened dry cocoa powder [15]. It is 
therefore possible that high magnesium content could partially contribute towards the health benefits 
of cocoa and cocoa-based products. Magnesium was also found to be positively associated with insulin 
sensitivity in Insulin Resistance Atherosclerosis Study [129]. Moreover, epidemiological study 
indicated that magnesium was inversely related to the development of metabolic syndrome [130, 131]. 
A prospective study (European Prospective Investigation Into Cancer and Nutrition (EPIC)–Potsdam 
Study) indicated that magnesium may reduce diabetes risk [132]. Moreover, Kandeel et al. [133] 
showed that intracellular magnesium deficiency leads to the development of insulin resistance. 

Cocoa and cocoa products are also rich in copper and can contribute significantly to daily copper 
intake. According to Dietary Reference Intakes, cocoa powder (44 g) provides 189% of daily copper 
intake followed by dark chocolate (34%), sweet chocolate (28%), milk chocolate (24%), white 
chocolate (3%) and cocoa drinks (2%). Hence, copper could be considered as one of the health 
contributors present in cocoa and cocoa products. Superoxide dismutase is a metalloenzyme (copper 
may be located in the center of the enzyme structure) that is involved in the dismutation of the 
superoxide anion to molecular oxygen and hydrogen peroxide [134, 135]. Joo et al. [136] indicated 
that copper in cocoa and chocolate had significantly contributed to human diet. Dark chocolate is the 
largest contributor of copper intakes in the US followed by chocolate milk, chocolate syrup, milk 
chocolate and chocolate cake. Moreover, a positive association was found between total copper intakes 
and consumption of chocolate [136].  



Molecules 2008, 13                            
 

 

2201

According to the USDA database [15], cocoa powder (44 g) could provide 11% selenium followed 
by milk and white chocolate (4%), dark chocolate (3%), sweet chocolate (2%), and cocoa drink (1%). 
Selenium is an essential micronutrient as cofactor in the formation of glutathione peroxidases, 
thioredoxin reductase, iodothyronine deiodinases, selenophosphate synthetase, selenoprotein P and 
other selenoproteins [137]. Specifically, it works by detoxification of hydrogen peroxide and organic 
peroxides [135]. A study reported that low level of selenium is directly related to diabetic nephropathy 
[138]. Selenium exhibited antioxidant properties by fully or partially restoring antioxidant enzymes in 
rat tissue [139]. Moreover, selenium exerted antioxidant ability through free radical scavenging and 
inhibition of lipid peroxidation [140]. Based on the significant contribution of selenium to antioxidant 
enzyme, it is important to consider the contribution of selenium in cocoa and cocoa products.  
 
Factors affecting the quantity and quality of polyphenols in cocoa beans and cocoa-based 
products 

 
Recently, various types of dark chocolates are available in the market with high flavonoid contents. 

These chocolates are produced by controlling bean selection, fermentation, and reduced heat and 
alkalization treatments [141]. Furthermore, there are chocolates producers who produced chocolates 
from high-flavonoids beans from Ecuador and utilized special roasting methods that preserve 
flavonoids in the cocoa beans [141]. By controlling the process involved in preparing the chocolates, a 
high-flavonoids chocolate can be produced that preserves up to 70% of the flavonoids present in the 
finished product. Most of the intervention studies used dark chocolate. This is due to the fact that dark 
chocolate contains more non-fat cocoa solid (cocoa powder) than other chocolates. The quantity of the 
flavonoids present in these products solely depends on the amount of non-fat cocoa solid content. On 
the other hand, white chocolate is prepared with cocoa butter and sugar without cocoa powder. Thus, 
dark and milk chocolates are expected to have flavonoids, while white chocolate will have none. Thus, 
the selection of the best quality cocoa and cocoa products could deliver the best antioxidant 
flavonoids.  
 
Countries of origin 

 
Cocoa from different varieties exhibited differences in polyphenols content by up to 4-fold [142]. 

Moreover, cocoa beans from different origins contain different amount of (–)-epicatechin and (+)-
catechin. Cocoa beans from Ecuador possessed the highest amounts of (–)-epicatechin and (+)-
catechin, followed by beans from Ghana and Trinidad [143]. Azizah et al. [144] also reported that 
cocoa beans from different countries may have different polyphenols content. They found that the 
highest phenolic content was in Malaysian beans followed by Sulawesian, Ghanian and Côte d’Ivore. 
There was about 6-fold variation in epicatechin contents in fermented cocoa beans from different 
regions [40]. 

Cocoa beans undergo various stages of processing before turning into raw cocoa (fermented and 
dried cocoa beans) and cocoa-based products. Cocoa products are products that were prepared from 
cocoa or cocoa-related components namely cocoa liquor, cocoa butter, and the products ranging from 
chocolates, cakes and pastries, mousses and crème, and drinks. Krawczyk [141] showed that flavonoid 
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content of cocoa products depends on the cocoa beans used to make them, for example type of cocoa 
bean, origins, and amount added in the production of the products. It is important to know the factors 
which influence the polyphenols content of finished products.  
 
Fermentation 

 
Fermentation is one of the steps involved in the production of cocoa beans. This step is crucial in 

determining the quality of cocoa aroma. The production of aroma precursors during fermentation is 
important for producing the full aroma of chocolate [145, 146]. There are internal and external 
fermentation stages involved during cocoa fermentation. External fermentation primarily involves the 
catabolism of the sugar pulp by microorganisms, while internal fermentation encompasses the 
biochemical changes in the cotyledon of the beans [145, 147].  

Research has shown that chocolates produced from unfermented beans have no chocolate flavor and 
are excessively astringent and bitter [148]. Fermentation will reduce the level of bitterness and 
astringency of the cocoa bean which could be attributed to the loss of polyphenols during fermentation 
[40, 142, 149]. Oxidation of polyphenols to insoluble tannins during fermentation was responsible for 
the formation of flavour precursors for chocolate processing [150-152]. Catechin has a bitter taste with 
a sweet aftertaste or is described as bitter and astringent [153]. Stark et al. [154] showed that catechins, 
which include epicatechin, catechin, procyanidin B2, procyanidin B5 and procyanidin C1, were the 
major compounds responsible for bitterness and astringency of roasted cocoa. However, Stark et al. 
[154] reported that the bitter taste and astringency were not just attributable to polyphenols, but were 
also contributed to by amino acids. 

The aforementioned factors are directly or indirectly related to the quantity and quality of 
polyphenols content of cocoa and cocoa products. Moreover, the level of flavonoids is also dependent 
on the processing steps with focus on the fermentation. Fermentation is considered as one of largest 
influences on flavonoid levels in chocolates [141]. The conversion of simple cyanidin compounds to 
more complex leucocyanidin is the main change in the polyphenolic compounds in cocoa cotyledons. 
The change has of great importance in determining the flavour of the final product [82]. Pettipher 
[155] demonstrated that procyanidins are converted to largely insoluble red-brown material resulting 
in the characteristic colour of chocolate during fermentation and roasting. To date, numerous studies 
have been reported on the loss of compounds in cocoa beans during these processes. According to 
Wollgast and Anklam [156] fermentation is an essential stage that lasts from five to six days in the 
development of suitable flavour precursors. 

During fermentation, polyphenols diffuse from their storage cells and undergo oxidation to become 
condensed high molecular compounds mostly insoluble tannins. This process involves both non-
enzymatic and enzymatic, and catalyzed by polyphenol oxidase. Even though this enzyme is strongly 
inactivated during the first days of fermentation, about 50 and 60% of enzyme activity after first and 
second days is still remained, respectively [157]. Furthermore, approximately 10 to 20% of epicatechin 
and other soluble polyphenols are reduced during fermentation. This could also due to the diffusion of 
polyphenols into fermentation sweating [40, 157, 158]. Caligiani et al. [143] reported that (–)-
epicatechin and (+)-catechin increased in the order of fully fermented (brown color), partly fermented 
(violet color) and unfermented (slaty color). In addition, high temperatures and prolonged processing 
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times will decrease the amount of catechins [156]. During fermentation, between days two and three, 
epicatechin content was observed to decrease sharply, which could indicate that it is either being used 
up for the formation of large tannins or lost in the fluids that drain away [40]. 

Different degrees of roasting significantly increased the amount of (+)-catechin due to the 
isomerization of (–)-epicatechin. Kyi et al. [159] demonstrated that the high temperature used during 
drying of fermented cocoa beans had reduced polyphenol contents as a result of enzymatic oxidation. 
Non-enzymatic oxidation of polyphenols could also occur at this stage. Almost 90% of polyphenols 
are lost from fresh cocoa beans during fermentation. Polyphenols content gradually decreased upon 
fermentation from days 0 to 8 [153]. Tomas-Barberan et al. [4] quantified the content of dimers and 
trimers in unfermented and unroasted cocoa powder. Dimers are present in cocoa powder produced 
from fermented and dried cocoa beans. As cocoa powder is derived from fermented, dried, and roasted 
cocoa beans, the loss of phenolic compounds is higher than that of cocoa liquor [160]. Furthermore 
several phenolic compounds were undetected in cocoa powder produced from fermented, dried, and 
roasted beans compared to cocoa powder produced from unfermented beans [4]. In practice, cocoa 
manufacturers would blend the unfermented, partly fermented and fully fermented beans, to obtain the 
desired flavour characteristics and also to reduce the excessive astringency and bitterness. The 
bitterness of the chocolates was also due to the presence of flavonoids. Thus, manufacturers tend to 
remove them in large quantities to enhance taste quality. Apart from this, the manufacturers tend to 
prefer Ghanian cocoa beans, which are well-fermented and flavorful than that of Dominican or 
Indonesian beans, which are considered as less fermented and have low quality cocoa flavor [161]. 
Therefore, the flavonoid content may not be detected in cocoa beans.  

The introduction of heating during manufacturing of chocolates and cocoa-based products can 
change the enantiomeric composition of (+)-catechin [162]. In addition, the epimerization of catechins 
could be caused by the conditions applied during the extraction procedures. It has been shown that two 
days of sun-drying of fresh unfermented cocoa beans (without fermentation) causes a 50% decrease in 
epicatechin content. This process may reduce the epicatechin content gradually during the process of 
making chocolates starting from fresh cocoa beans. However, most of the beans used for chocolates 
manufacturing are fermented, yet, it is far from being a standardized process throughout the world, or 
even within a region.  
 
Manufacturing process 

 
Chocolate is made from different recipes and contains other ingredients in addition to cocoa butter 

and powder [163]. The basic ingredients required for the manufacturing of chocolate are cocoa liquor, 
sugar, other sweeteners, cocoa butter, oil, milk powder, milk crumb and emulsifiers. Chocolates may 
have different percentages of non-fat cocoa solids. There are different percentages of cocoa butter, 
sugar, and milk powder are used in making different types of chocolates namely dark chocolate, milk 
chocolate, and white chocolate. The content of polyphenols can vary tremendously depending on the 
source of beans, primary and secondary processing conditions, and process of chocolates making. Due 
to these factors, the ratio and types of polyphenols found in cocoa beans are unlikely to be the same as 
those found in the finished products [31]. Alkalization (or dutching) of cocoa powder will reduce the 
polyphenol content and antioxidant activity [48, 164].  
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According to Cooper et al. [5], the presence of non-fat cocoa solid (NFCS) is an excellent marker to 
determine the total phenolic content. Miller et al. [161] showed that the highest NFCS was in cocoa 
powder (72-87%), followed by baking chocolate (45-49%), dark chocolate (20-30%), semi sweet 
chocolate (15-19%), milk chocolate (5-7%), and chocolate syrup (5-7%). Dark chocolates contain the 
highest NFCS among the different types of chocolates. Theoretically, the higher amount of non-fat 
cocoa solid indicates the higher phenolic content in the chocolates. Furthermore, there was positive 
and significant relationship between NFCS and antioxidant properties [161]. Vinson et al. [89] 
reported that the amount of polyphenols increased in the order of hot chocolate < milk chocolate < 
dark chocolate < cocoa. In addition, Cooper et al. [165] reported that the percentage of cocoa which 
appears on chocolates' labeling cannot be used accurately to estimate the polyphenol contents, since it 
includes polyphenol-free cocoa butter. This may overestimate the polyphenols content in certain type 
of chocolates. Furthermore, cocoa polyphenols contain different structures of flavonoids, thus creating 
difficulties in the determination of polyphenols content in chocolates.  

Epicatechin has a strong correlation with other polyphenols compared to catechin [32]. The 
relationships suggest that polyphenols are affected to the same degree. A study showed that fresh 
cocoa beans contain (+)-catechin with undetectable levels of the (–) form [162]. The presence of the (–
)-catechin in chocolates could be due to epimerization of the (–)-epicatechin during the manufacturing 
of chocolates. Epicatechin has been reported as the main polyphenols present in cocoa beans [40, 166]. 
Usually, it does not correlate well with the cocoa and polyphenols content, especially the chocolates 
that are high in total polyphenols, such as dark chocolates [165]. This may follow the agreement that 
epicatechin is well established as the main polyphenols found in cocoa beans. A recent study showed 
that roasted cocoa beans and cocoa products contained flavan-3-ol (–)-catechin along with (+)-catechin 
and (–)-epicatechin. The compound was formed during manufacturing process through epimerization 
of (–)-epicatechin and its epimer (–)-catechin [46]. As reported, typical RP-HPLC analysis was limited 
in separating enantiomers of catechin and epicatechin. 
 
Bioavailability of cocoa polyphenols 

 
Recently, there have been two major approaches commonly used to determine the availability of 

phenolic compounds either by measuring their concentration in plasma and urine after ingestion of 
known amount of foodstuffs or ingestion of the pure compounds [167]. The bioavailability of 
polyphenols greatly depends on the chemical structure, glycosylation, acylation, conjugation, and 
polymerization. Different forms of catechins either (+) or (–) are absorbed differently. According to 
Donovan et al. [168], the concentration of (–)-catechin was higher to that of (+)-catechin in chocolates. 
However, bioavailability of (–)-catechin was less than the (+) form of catechin, resulting in low plasma 
concentration of (–)-catechin. On the other hand, Fraga et al. [169] reported that (+)-catechin was 100 
times more efficient than quercetin in an in vivo oxidative stress model.  

Monomeric flavonoids are absorbed in the small intestine, but polymeric procyanidins may be 
degraded by intestinal and colonic microflora followed either by absorption of the metabolites or 
excretion in the feces. After absorption, the monomers and dimers may be methylated, sulfated, or 
glucuronidated in the liver [167]. Besides physiological factors, food matrix and texture, the presence 
of other nutrients (protein, carbohydrate, and fat) and the interaction between them may directly or 
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indirectly affect the bioavailability of polyphenols. In a human clinical trial, the administration of 148 
mg of procyanidins had increased plasma epicatechin at 2 h compared to baseline (0 h) [170]. In 
addition, plasma epicatechin concentration increased to 21.2 nmol/L after consumption of the 
procyanidins and then returned to normal levels [170]. Similarly, plasma procyanidin dimer, (–)-
epicatechin and (+)-catechin can be detected as early as 0.5 h and reach maximal concentrations by 2 
hr after acute consumption of cocoa [171]. Murphy et al. [172] indicated that administration of 
procyanidins increased plasma (–)-epicatechin and (+)-catechin by 81% and 28%, respectively. 
Moreover, (–)-epicatechin was detected as early as 0.5 to 1 hr after chocolate or cocoa consumption 
and they are present mainly as sulfate conjugated, glucuronides, or methylated forms [173]. A study 
related to plasma kinetics of epicatechin in men after consumption of 40 g and 80 g of dark chocolates, 
detected that epicatechin increased markedly after chocolates consumption, reaching a maximum 
between 2-3 hours [174]. The maximal concentration and area under the curve of plasma kinetics 
correlate well with the dose of chocolates. This indicates that epicatechin is absorbed from chocolates 
and is rapidly eliminated from plasma. Attainable plasma levels were 0.7 μmol/L (free epicatechin and 
epicatechin conjugates) from 80 g of black chocolates which contain 164 mg of epicatechin. To a 
greater extend, Baba et al. [175] indicated that administration of procyanidins B2 [epicatechin-(4β-8)-
epicatechin] extracted from cocoa powder was absorbed in the plasma and excreted in the urine. The 
compounds appeared maximally in the plasma at 30 min and decreased gradually from 30 min to 300 
min.  

Different types of polyphenols, polyphenol structures (+ or –), glycosylation, acylation, 
conjugation, and glycosides all showed different degrees of absorption. With the exception of catechin 
and epicatechin, most flavonoids are present as glycosides (attached to a sugar moiety). The absorption 
of these glycosides is dependent on the position of sugar linkage [176]. Glycosidic flavonoids require 
hydrolysis by colonic microflora to cleave the sugar and release the aglycone for absorption, whereas 
aglycones (without sugar moiety) can passively diffuse through the small intestine. As reported by 
Spencer et al. [177] only small amounts of procyanidins B2 and B5 were transferred to the serosal side 
of enterocytes in isolated small intestine. However, the transferred dimers resulted in 
unmetabolized/unconjugated epicatechin monomer. Baba et al. [173] reported that (–)-epicatechin 
from chocolate or cocoa are present in plasma of human volunteers as sulfate, glucuronide, and 
sulfate-glucuronide (mixture of sulfate and glucuronide) conjugates, rather than methylated forms. It 
was reported that plasma concentration of glucuronide conjugates of non-methylated and methylated 
(–)-epicatechin were higher compared to other forms. Using a pure (–)-epicatechin compound, Da 
Silva [178] showed that (–)-epicatechin is present in plasma in the forms of glucuronide and sulfate-
glucuronide conjugates (free and O-methylated) forms. The glucuronidation of (–)-epicatechin occurs 
at the position 3‘ of the B ring in humans [179]. Natsume et al. [179] found that (–)-epicatechin 
metabolites present in human plasma are different than the forms present in rats. The glucuronidation 
of (–)-epicatechin occurs at the 7 position of the A ring and the 3’ position of the B ring (Figure 1) in 
rats and humans, respectively. This glucuronidation compound showed low antioxidant activity 
compared to intact compounds as it has lost the catechol structure of the B ring responsible for the 
antioxidative effects. (–)-Epicatechin metabolites are present in urine within 24 hr in the range of 25% 
to 30%. There is a significant reduction in total (–)-epicatechin metabolites after 6 hr and the 
remaining conjugates are mostly present as the O-methylated form. Excretion of (–)-epicatechin 
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metabolites in urine was observed to be dose-dependent [180]. Moreover, it was observed that the 
level of (–)-epicatechin metabolites excreted in urine was in the close range after equivalent ingestion 
of pure (–)-epicatechin and (–)-epicatechin from cocoa powder. Hence, the bioavailability of (–)-
epicatechin was not influenced with the presence of other compounds present in cocoa powder. 
However, protein is one of the food factors that was widely studied due to their interaction with 
polyphenols. The presence of protein in food matrix may form complexes with polyphenols [181]. 
Serafini et al. [182] demonstrated that the presence of milk inhibits polyphenol absorption. Protein 
mainly from milk (chocolates) and digestive environment (salivary protein) may form complexes with 
polyphenols and reduce their bioavailability [18]. In addition, antioxidant capacity of polyphenols was 
modified with the presence of protein [183]. To date, the evidence for the interference of protein with 
polyphenols remains questionable. For instance, a study indicated that the addition of milk reduces the 
antioxidant capacity by 30% [18]. Schroeter et al. [17] however found that bioavailability of 
polyphenol monomer (epicatechin) was not reduced when cocoa is ingested with milk. It has been 
demonstrated that polyphenols bind to salivary protein and resulted in precipitation of insoluble 
complex and astringent flavour [184]. Moreover, high molecular weight polyphenols may form strong 
interaction with protein. Polyphenols not only bind to salivary protein but also with dietary protein and 
digestive enzymes in which in turn may influence their transportation and absorption activities [185]. 
The presence of protein either in foods matrix or in the digestive system could at least affect 
polyphenols bioavailability.  

Studies by Zhu et al. [186] and Klimczak et al. [187] reported that the degradation of catechin, 
epicatechin, and their dimers was influenced by physiological pH. Zhu et al. [188] indicated that auto-
oxidation and epimerization were two major reactions involved in determining the stability of phenolic 
compounds under typical experimental conditions. Moreover, Rios et al. [33] reported that 
procyanidins were remarkedly stable in the stomach environment, and thus available for absorption or 
metabolism. Deprez et al. [189] showed that polymeric proanthocyanidins were degraded into low 
molecular weight aromatic compounds, namely, 2-(p-hydroxyphenyl)acetic acid, 2-(p-hydroxyphenyl) 
propionic acid, 2-(m-hydroxyphenyl)acetic acid, 2-(m-hydroxyphenyl)propionic acid, 5-(m-hydroxy-
phenyl)valeric acid, and phenylpropionic acid after 48 h incubation with human colonic microflora. 
Similarly, flavanol-rich chocolate intake increased urinary excretion of phenolic acids, namely 
m-hydroxyphenylpropionic acid, ferrulic acid, 3,4-dihydroxyphenylacetic acid, m-
hydroxyphenylacetic acid, vanillic acid, and m-hydroxybenzoic acid [33]. Hence, it is clear that under 
the acidic environment in gastric milieu, procyanidins oligomers are hydrolyzed to monomeric 
epicatechin and dimer. The presence of these monomer and dimer could in turn enhance their 
absorption in the small intestine [190]. However, very little study has been done to investigate the 
effects of food components in our diet on the catabolism products of unabsorbed polyphenols in the 
guts because most of the high molecular weight polyphenols are not absorbed in the small intestine. In 
addition, most of the results were based on the normal and healthy subjects where the rate or extend of 
absorption are assumed to be normal. Relatively little studies have been reported on the bioavailability 
of flavonoids in subjects with disease. For example, there is a difference in the metabolism of 
polyphenols between normal and disease-state subjects. The concentration of naringenin metabolites 
was higher in healthy (17.3 μM) compared to tumor-bearing (10.6 μM) rats [191]. However, the nature 
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of metabolites remains the same in plasma, tissues, and urine between the groups. To date, there is 
limited study on the bioavailability of cocoa flavonoids bioavailability in disease-state subjects.   

Unlike polyphenols, little is known of the presence of methylxanthines and their metabolites in 
human plasma and urine. Most of the studies reported the presence of polyphenols monomers 
(catechin and epicatechin) in plasma but not methylxanthines. Caffeine, theobromine, theophylline, 
and paraxanthine are four types of methylxanthines detected after 2-hr of cocoa intakes [192]. Of 
these, paraxanthine accounted for 67% of plasma methylxanthines followed by theobromine (24%), 
and theophylline (8%) [193]. However, plasma half-lives of theobromine and theophylline are 6.2 and 
7.2 hr, respectively compared to caffeine and paraxanthine (4.1 and 3.1 hr, respectively) [194]. As 
cocoa contained significant amount of methylxanthines, it is interesting to know their synergistic 
effects with cocoa flavonoids.  
 
Conclusions 

 
There is a link between cocoa antioxidant and health due to the significant flavonoids content. 

However, the presence of methylxanthines, peptides and micronutrients could enhance or reduce the 
observed health effects. Factors such as bioavailability, antioxidant status, and state of subjects being 
studied may directly or indirectly affect the health benefits of cocoa polyphenols and the other 
components. This review opens new frontier on the health benefits of methylxanthines, peptides, and 
micronutrients in cocoa and cocoa-based products. Health benefits of these components could be 
explored in short- and long-term studies and among healthy and disease-state subjects. 
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