SECTION 6 – REACTIONS AND SYNTHESIS OF ALKENES

6-1 -- Addition of Halogens (X₂)

- Stereochemistry (Anti-Addition Observed)
- Bromonium Ion Intermediate
- Nucleophilic Solvent (H₂O) vs. Inert Solvent (CCl₄)

6-2 -- Halohydrin Formation

- Use of Hypobromous Acid (HO-Br)
- Anti-Addition of -Br and -OH

6-3 -- Hydration Reactions

- Conversion of Alkenes to Alcohols
- Markovnikov Regiochemistry
- Acid-Catalyzation of Hydration Reactions
- The Principle of Microscopic Reversibility

6-5 -- Oxymercuration Reaction

- Markovnikov Addition of –H and -OH
- Use of NaBH₄ as a Source of Hydride (:H⁻)
- No Carbocation Rearrangements Observed
- Hydride Shift

6-6 -- Hydroboration Reaction

- Borane, BH₃
- Replacing Borane's –H's with Alkyl Groups (Substitution)
- Mechanism for Hydroboration is "Concerted"
- Reaction of BH₃ with the Solvent Tetrahydrofuran (THF)
- Steric Effects Control the Regiochemistry of the Observed Products
- Syn-Addition ("Cis"-like)

6-9 -- Non-Markovnikov Addition of HBr

- Does Not Work with the Reagents HCl or HI
- Free-Radical Chain Mechanism
- Initiation and Propagation Steps of the Mechanism
- 3° Radical vs. 1° Radical Intermediates (Stability)
- Radical Stabilities
- Polymer Production (Teflon, Polystyrene, Polyvinylchloride [PVC], and Plexiglass)

6-11 -- Catalytic Hydrogenation Reaction

Syn-Addition of H₂ Across a Double Bond

6-11 -- Hydroxylation Reaction

Conversion of an Alkene to a Diol

6-12 -- Oxidative Cleavage Reactions

The Ozonolysis Reaction

• Permanganate Reactions (MnO₄)

6-12 -- Carbene Additions Across a Double Bond

- Their Use in Producing 3-Membered Rings
- How Carbenes are Generated

6-13 -- The Simmons-Smith Reaction

- Carbenoids
- Zn(Cu) = "Zn-Cu" Couple

6-14 -- Periodic Acid Cleavage

• Cleavage of Diols to Produce 2 Carbonyl Compounds

Section 6 = Reactions and Synthesis of Alkenes. we'll be studying 13 reactions.

we already studied the following reaction in section 5: C=C + H-Br -> -C-C- (Markovníkov)

① Addition of Halogens (Xz).

L> Xz = Clz, Brz

$$L \rightarrow X_2 = Cl_2$$
, Br_1

- stereochemistry -> halogens are added to opposite faces of the double-bond (d.b.)

anti-addition

carbocation rearrangements are observed.

3 resonance structures are averaged to get actual structure:

* 2nd step of the mechanism on the next page ...

bromonium ion

Q: What if H2O (a nucleophilic solvent) is used as the solvent instead of the inert solvent, ccl4?

L> A: Then we get a totally different reaction with different products.

2 Halohydrin Formation.

general:
$$C=C$$
 $\xrightarrow{X_2}$ $\xrightarrow{-C-C-}$ $(X_2=Cl_2, Br_2, I_2)$

mechanism:

$$C = C \xrightarrow{Br_2} C \xrightarrow{OH_2} C \xrightarrow{OH_2}$$

hypobromous acid)
present in solutions
of Brz and Hzo

* anti-addition of-Br and-OH

intermediate to see why ...

ChemistryNotes.com

$$(CH_3)_2C - CH_2 \longleftrightarrow (CH_3)_2C - CH_2 \longleftrightarrow (CH_3)_2C - CH_2$$

$$\oplus : Br:$$

$$\oplus : Br:$$

* more important because

De charge on the 3° carbon.

3 Hydration Reactions = addition of H-OH (H20) across a d.b.

-> converts alkenes to alcohols.

$$R_{2}C = CH_{2} \xrightarrow{H_{2}O} R_{2}C - CH_{2}$$

$$\begin{pmatrix} or H_{3}O^{\oplus} \end{pmatrix}$$

$$A M O S$$

- mechanism = next page ...

* Markovnikov regiochemistry is observed.

- hydration is acid-catalyzed

 L> H+ (H30+) is used but later regenerated.
- hydration of alkenes is reversible.

Le Châtlier's the right.

Principle:

removal of H20 or adding concer

removal of H₂O or adding concentrated H₂Soy or H₃PO₄ drives equilibrium to the left.

- Principle of Microscopic Reversibility = forward and reverse reactions go via the same mechanism, same intermediate, and the same transition state.

- there's only one lowest-energy pathway.

$$\begin{array}{c} (4) \quad \text{Oxymercuration}. \\ R_2C = CH_2 + H_9(OAc)_2 \xrightarrow{H_2O} R_2C - CH_2 \xrightarrow{\text{NaBHy}} \begin{array}{c} OH & H \\ R_2C - CH_2 \end{array} \\ & \begin{array}{c} \text{Nabhy} \\ \text{R_2C} - CH_2 \end{array} \end{array} \xrightarrow{\text{Narkovnikov}} Addition of \\ & \begin{array}{c} \text{OAc} = OH \\ \text{OAc} = OH \end{array} \end{array}$$

R₂C = CH₂
$$\xrightarrow{-OAC}$$
 R₂C - CH₂ $\xrightarrow{H_2O:}$ R₂C - CH₂ $\xrightarrow{H_2O:}$ R₂C - CH₂ \xrightarrow{OAC} $\xrightarrow{OA$

$$\frac{2^{\text{nd}} \text{ step:}}{\text{Mech. is}} \qquad \begin{array}{c} \text{OH} \\ \text{R}_{z}\text{C} - \text{CH}_{z} \end{array} \xrightarrow{\text{NaBH4}} \qquad \begin{array}{c} \text{OH} \\ \text{R}_{z}\text{C} - \text{CH}_{3} \end{array}$$
unimportant

* NaBHy is a source of hydride (":HO"); It kicks out and replaces - HgOAc

<u>net result</u> ⇒ Markovnikov addition of -H
and -OH, <u>but</u> no carbocations involved, so
no carbocation rearrangements.

ChemistryNotes.com

<u>SECTION 6</u> – REACTIONS AND SYNTHESIS OF ALKENES

Were the FREE Section 6 Notes Useful?

Want the FULL VERSION of the Section 6 Notes?

Download Them Instantly at:

ChemistryNotes.com