SECTION 5 – STRUCTURE AND REACTIVITY OF ALKENES

5-1 -- Alkenes (“Olefins”)
- Strength of a Double Bond (d.b) Relative to a Single Bond (s.b)

5-1 -- Stereoisomerism of Alkenes (Cis/Trans)

5-1 -- Nomenclature of Alkenes
- 6 Rules for Naming Alkenes
- Numbering the Principal Chain (Main Chain)
- Identifying Locator #’s for Double Bonds
- Endings / Suffixes (-ene, -diene, -triene, and -tetraene)

5-3 -- Naming Branched Alkenes
- Alkenyl Substituents (Alkenes as Branches)

5-4 -- Naming Alkenes that Exhibit Stereoisomerism
- E-Configurations and Z-Configurations (E/Z Stereochemistry)
- Priority System within Nomenclature (E/Z Stereochemistry)

5-7 -- Relative Stabilities of Alkenes
- Trans-Alkenes vs. Cis-Alkenes
- Cyclic Alkenes
- Alkyl Group Substitution (Branches) Stabilize Alkenes

5-8 -- Electrophilic Addition Reactions
- Electrophilic Addition of HX (X = -Cl, -Br, -I)
- Regiospecific Reactions

5-9 -- Markovnikov’s Rule
- Carbocation Stability
- Hyperconjugation and Electron Delocalization
- Resonance Picture of Carbocations

5-11 -- The Hammond Postulate

5-12 -- Rearrangement of Carbocations
- 1,2-Hydride Shifts (:H’)
- 1,2-Alkyl Shifts (:R’)

5-13 -- Degree of Unsaturation
- Calculating the Degree of Unsaturation
- General Formula for Degree of Unsaturation
Section 5 = Structure and Reactivity of Alkenes. 5-1

- Alkenes ("olefins") = hydrocarbons with one or more double-bonds (d.b.'s).

\[C=C \rightarrow 1 \sigma \text{-bond and 1 } \pi \text{-bond} \]
\[\rightarrow \text{double-bonds are shorter and stronger than single-bonds} \]

\[\text{lengths:} \]
\[\text{d.b.} = 1.33 \text{Å} \]
\[\text{s.b.} = 1.54 \text{Å} \]
\[(1 \text{Å} = 1 \times 10^{-10} \text{m}) \]

- Strength of a \(C=C \) d.b. \(\Rightarrow \) 145-150 kcal/mol
 (\(\sigma \) and \(\pi \) combined) \(\leq \) 80-85 kcal/mol (C-C \(\sigma \)-bond).

\[\text{Stereoisomerism:} \]
\[\text{trans} \]
\[\text{cis} \]

\[\text{the energy-barrier (E_a) is too high at room temp. to rotate 1 end by 180°.} \]

\[\text{Nomenclature of Alkenes.} \]

\[\text{name of principal (main) chains or rings contain "-ene" endings.} \]

\[\text{ex: } H_2C=CH_2 \quad \text{IUPAC} \quad \text{COMMON NAME} \]
\[\text{ethene} \quad \text{ethylene} \]

\[\text{ex: } H_2C=CH-CH_3 \quad \text{propene} \quad \text{propylene} \]
6 Rules for Naming Alkenes.

1. Chains numbered from an end such that the d.b. gets the lowest locator number, specifying the first carbon of the d.b.

 ex: \(\text{CH}_2=\text{CH}-\text{CH}_2-\text{CH}_3 \rightarrow 1\text{-butene} \)

 ex: \(\text{CH}_3-\text{CH}=\text{CH}-\text{CH}_3 \rightarrow 2\text{-butene} \)

2. If 2 or more d.b.'s are present, number the main chain so that the d.b.'s get the lowest #’s overall.

 * endings (suffixes) \(\Rightarrow -\text{diene}, -\text{triene}, \) and \(-\text{tetraene} \)

 ex: \(1,3,7\text{-octatriene} \)

 (NOT: \(1,5,7\text{-octatriene} \))

 ex: \(1,3\text{-cyclopentadiene} \)

- **1st priority**: principal (main) chain is the one with the most d.b.'s. It's not simply the longest chain!

- **Tiebreaker**: if 2 or more chains have the same # of d.b.'s, choose the longest chain.

Example:

\[
\begin{array}{c}
\text{Ex:} \\
\begin{array}{c}
\text{branch} \\
\end{array}
\end{array}
\]

\[\Rightarrow 2\text{-propyl-1,5-hexadiene}\]

Example:

\[
\begin{array}{c}
\text{Ex:} \\
\end{array}
\]

\[\Rightarrow 3\text{-ethylcyclopentene}\]

Notes: no need to specify "1" for the alkene location, it's implied.

4. Alkenal Substituents (Branches).

- "alkenes as branches"
- change "-ene" ending to "-enyl" ending

a) number the branch from its point of attachment to the main chain.

b) specify branch #’s with a locator #.

* examples on the next page...
-CH = CH₂ | IUPAC: ethenyl | COMMON NAME: vinyl
CH₂-CH = CH₂ | -2-propenyl | allyl
CH = CH-CH₃ | -1-propenyl | (none)

\[\text{ex:} \quad \begin{array}{c}
5 \quad \begin{array}{c}
4 \quad 1 \quad 3 \quad 2 \quad 3' \quad 2' \quad 4'
\end{array}
\end{array} \quad \rightarrow \quad 3-(1\text{-butenyl})\text{cyclopentene} \]

\[\text{ex:} \quad \begin{array}{c}
5 \quad \begin{array}{c}
6 \quad 3 \quad 4 \quad 2 \quad 5'
\end{array}
\end{array} \quad \rightarrow \quad \begin{array}{c}
1-(2\text{-propenyl})-1,4\text{-cyclohexadiene}
\end{array}\quad \text{or} \quad \begin{array}{c}
1\text{-allyl}-1,4\text{-cyclohexadiene}
\end{array} \]

5. Stereoisomerism = possible if and only if each of the d.b. C's has 2 different things attached.

\[\begin{array}{c}
\text{CH₃} \quad \text{CH₂CH₃}
\end{array} \quad \begin{array}{c}
\text{C=CH₂CH₃}
\end{array} \quad \begin{array}{c}
\text{CH₃} \quad \text{C=CH₂CH₃}
\end{array} \quad \begin{array}{c}
\text{C=CH₂CH₃}
\end{array} \quad \begin{array}{c}
\text{CH₃} \quad \text{C=CH₂CH₃}
\end{array} \]

\[\text{cis-2-pentene} \quad \text{trans-2-pentene} \]

\[\text{cis} = "\text{similar groups" on the same side.} \]
\[\text{trans} = "\text{similar groups" on the opposite side.} \]

*note: \[\begin{array}{c}
\text{H} \quad \text{CH₃}
\end{array} \quad \rightarrow \quad \text{cis/trans unclear here, so see rule 6 on the next page...} \]
Priority System within Nomenclature.

- assign high and low priorities to groups or atoms attached to each double-bond (d.b.).

\[\text{high } C = C \text{ high} \Rightarrow \text{Z-configuration (together)} \]

\[\text{low } C = C \text{ low} \Rightarrow \text{E-configuration (opposite)} \]

* unimportant, but: \[Z = \text{Zusammen} \Rightarrow \text{German words} \]

- highest priority substituents \(\Rightarrow \) atom with the highest atomic #

1st tiebreaker \(\Rightarrow \) list atoms attached to the atoms in (1) above in order of decreasing atomic #, and compare until first point of difference

2nd tiebreaker \(\Rightarrow \) move to first atom of the list and repeat.

\[\text{ex: } C \text{ higher priority than } H \]

\[\text{ex: } C \text{ (C,C,H) } \Rightarrow \text{this branch has highest priority} \]

\[\text{zipped together on the next page...} \]
SECTION 5 – STRUCTURE AND REACTIVITY OF ALKENES

Were the FREE Section 5 Notes Useful?
Want the FULL VERSION of the Section 5 Notes?

Download Them Instantly at:

ChemistryNotes.com